Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии мембраны

    Цитоплазма бактерий. Все содержимое клетки, ограниченное клеточной стенкой, называется протопластом. Протопласт состоит пз цитоплазматической мембраны и живого вещества клетки — цитоплазмы, или протоплазмы. Цитоплазма бактерий является бесцветной, прозрачной, слегка вязкой. [c.249]

    Мембраны бактерий. Протопласт снаружи окружает цитоплазматическая мембрана — плазмалемма, прилегающая непосредственно к оболочке. Мембраны составляют 40—90% всей массы клетки. Длительно существовало ошибочное представление, что периферическая плазмалемма бактериального протопласта является единственной мембранной структурой бактериальной клетки. Сейчас известно, что периферическая мембрана образует инвагинации, составляющие внутриклеточные мембранные структуры. Различными методами показано, что мембраны трехслойные и достигают 8,5 нм в толщину. У всех исследованных бактерий мембраны могут быть причислены к обязательным компонентам бактериальной клетки [63, 126]. В. И. Бирюзовой [23] собрана большая литература о молекулярной организации плазмалеммы. Ее наружная поверхность, обращенная к клеточной оболочке, состоит из субъединиц грибовидной формы с размером головки 8—12 нм. Часть этих субъединиц, по-видимому, является ферментативными белками, другая часть — белково-липидными структурами. [c.25]


    Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка тончайших механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др. [c.64]

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]

    Энергопреобразующая. Важнейшей функцией многих биомембран служит превращение одной формы энергии в другую. К энергопреобразующим мембранам относятся внутренняя мембрана митохондрий, цитоплазматическая мембрана бактерий, мембраны бактериальных хроматофоров, тилакоидов хлоропластов, цианобактерий и ряд других. [c.302]

    Сейчас обнаружено с помощью электронной микроскопии, что у грамположительных бактерий имеются более или менее сложные внутриклеточные мембранные системы сложные клубки, пластинчатые, сотовидные и трубчатые образования. Поверхность внутриклеточных мембран больше, чем у плазмалеммы Мембраны составляют 8-9% от массы клетки. Функции мембран бактерий до конца не установлены, так как пока нет метода их достоверного выделения. У бактерий мембраны очень разнообразны и меняются от возраста, состава среды и других факторов внешней среды (рис.2.8). [c.38]

    Внутриклеточные мембраны и ламеллы. У некоторых бактерий мембрана охватывает цитоплазму без складок и впячиваний. У других она образует впячивания, пронизывает цитоплазму или формирует мембранные тельца. У ряда бактерий описаны мезосомы (рис. 2.21). Правда, в этом случае, вероятно, речь идет об артефактах, связанных с приготовлением препаратов. [c.46]


    Цепочка Плазматическая бактерий мембрана [c.191]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Поскольку с помощью радиоактивного излучения и последующей химической обработки можно получать мембраны с порами заданного диаметра, а распределение пор по диаметрам чрезвычайно узкое, ядерные мембраны очень перспективны для микроаналитических исследований в цитологии и элементном анализе, для фракционирования растворов высокомолекулярных соединений и их очистки. Ядерные мембраны с успехом применялись для изучения размеров и формы различных типов клеток крови (в частности, для выделения раковых клеток из крови), для изучения вязкости крови и слипания ее клеток в зависимости от различных условий, для получения очищенной от бактерий воды в полевых условиях и многих других целей [59, 65—67]. [c.57]

    Основным преимуществом металлических мембран является однородность структуры и, как следствие, размеров пор. Эти мембраны не разрушаются бактериями, химически стойки в различных средах и могут подвергаться термической обработке. Они легко очищаются обратным током воды или какой-либо другой жидкости либо прокаливанием. [c.73]

    Ультрафильтрация оказывается полезной при проведении анализов растворов на содержание бактерий из так называемых чистых трубопроводов заводов пищевых производств (мясомолочных, сыроваренных и др.). а также при проведении анализов растворов органических веществ, в которых могут развиваться микроорганизмы. Мембраны, используемые для проведения анализов, должны быть очень высокого качества. Перед употреблением их поверхность рекомендуется тщательно исследовать (например, под микроскопом). [c.288]

    Изучался процесс очистки воды от микроорганизмов ультрафильтрацией. Разделению подвергались растворы 6 различных типов микроорганизмов при концентрациях до 160 000 единиц на кубической миллилитр. В десяти опытах очищенная вода была полностью стерильна и лишь в одном в ней были обнаружены бактерии, что авторы объясняют возможным дефектом мембраны или случайным попаданием бактерий в систему [6]. Данные, приведенные в работе [5], показали, что на мембранах отечественного производства оказывается возможным проводить очистку сточных вод от самых различных по природе растворенных веществ. Ниже приведены примеры применения обратного осмоса и ультрафильтрации в схемах очистки сточных вод ряда производств. [c.306]

    При исследовании неизвестных бактерий используется дифференциальный метод окраски по Граму, заключающийся в окраске микроорганизмов метиловым фиолетовым с последующей обработкой иодом. Окрашенные таким образом бактерии, необесцвечивающиеся спиртом, называют грамположительными, а бактерии, обесцвечивающиеся под действием спирта, называют грамотрицательными. Способность окрашивания по Граму зависит от свойств клеточной оболочки и цитоплазматической мембраны. Краситель и иод проникают во внутрь всех клеток, но у грамположительных образуется более устойчивое окрашенное соединение, чем у грамотрицательных. Установлен ряд существенных различий между свойствами этих микроорганизмов. (Например, отношение РНК/ДНК у грамположительных 8 1, а у отрицательных 1 1 содержание жиров у первых низкое, а у вторых — высокое.) Кроме окраски изучают морфологические, биохимические и другие свойства иеиэвестных микроорганизмов, [c.287]

    В результате исследований [27, 157] было обнаружено, что насыщенные жирные кислоты в мембранах бактерий, способных существовать в таких органических средах, как нефть, оказались замещены ненасыщенными - это привело к повышению текучести мембраны клеток. [c.100]

    Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), добавляют пенициллин (2—4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает вьщеление аминокислот в среду. [c.45]


    У др. бактерий и высших организмов Т. связана с мембраной и ее активность сопряжена с переносом Н" через мембрану. Константа равновесия р-ции в этом случае зависит от разности электрохим. потенциалов Н" по разные стороны мембраны и достигает величины 500. [c.618]

    Отличительной чертой всех изученных штаммов оказалось наличие у них внутриклеточных мембранных структур, подобных аналогичным образованиям, описанным у нитрифицирующих и фотосинтезирующих бактерий. Мембраны их либо расположены периферически, либо проходят через всю цитоплазму. Авторы, сравнивая структуру клеток Methylo o us apsulatus и ряда нитрифицирующих и фотосинтезирующих бактерий, высказывают предположение, что присутствие обширной мембранной системы у метилотрофов, у автотрофных и фотосинтезирующих микроорганизмов отражает определенный характер окислительно-восстановительных процессов, протекающих при использовании этих специфических источников углерода и энергии. [c.140]

    Существенное преимущество обратного осмоса перед другими методами очистки сточных вод — одновременная очистка от неорганических примесей, что особенно важно в системах оборотного водоснабжения. Обеспечивается возможность получения наиболее чистой воды, так как мембраны могут задерживать практически все растворенные вещества и взвеси минерального и органического характера, в том числе бактерии, микробы и другие мнкроформы. [c.107]

    Особенно большой интерес представляет обработка таких растворов, один или несколько компонентов которых сами способны осаждаться на подложках, образуя динамические мембраны. Подобное явление, называемое самозадержанием, часто встречается при фильтрации через пористые подложки сточных вод, а также загрязненных природных вод. Так, при пропускании через пористые керамические трубки бытовых сточных вод и воды из загрязненного озера химическое потребление кислорода (ХПК) в очищенной воде снижалось на 80— 90%, а бактерии задерживались практически полностью [99]. Предло- [c.85]

    Однако имеется ряд задач, где пренмуш,ество использования динамических мембран не вызывает сомнения. Прежде всего это относится к процессам, где не требуется проводить глубокое обессоливание. Например, применение динамических мембран для обработки воды из загрязненных рек и водоемов позволит полностью очистить воду от бактерий, вирусов, взвесей, снизить содержание растворенных веществ в несколько раз, что во многих случаях сделает воду пригодной для технического и бытового использования. Несомненным преимуществом динамические мембраны будут обладать и тогда, когда необходимо очистить раствор от ионов одного знака. [c.90]

    О группе токсичных для бактерий белков (колицинов) уже шла речь в разд. Г, 7. Они, по-видимому, также связываются со специальными рецепторами на внешней мембране бактерий типа Е. соИ. Нейландс и его сотрудники обнаружили, что у Е. соН рецептор колицина М служит также рецептором и для сидерохромного пептида — феррохрома (дополнение 14-В), и для бактериофага Т5. С этим же участком мембраны связывается антибиотик альбомицин. Существует предположение, что на ранних этапах эволюции у бактерий появились молекулы, обладающие способностью к образованию хелатных комплексов с железом, причем размер этих комплексов постепенно увеличился до такой степени, что они утратили способность диффундировать через наружную мембрану в клетку. В результате возникли специфические системы переноса, которые позднее были использованы фагами к. штаммами, продуцирующими колицин . [c.306]

    К. присутствует в тканях животных (в значит, кол-вах в мыщцах), бактериях и растениях (биол. активностью обладает только Ь-К.). Нек-рые насекомые (напр., личинки мучного червя ТепеЬпо то111ог), для к-рых К.-фактор роста, не синтезируют его (для них К.-витамин). Высшие животные способны синтезировать К. из Ь-лизина в результате многостадийного процесса. Для них К.-кофермент, участвующий в переносе остатков жирных к-т через мембраны из цитоплазмы в митохондрии, [c.331]

    Мембраны бактерий, как правило, имеют более простой липидный состав, чем мембраны растит, и животных клеток. Все бактерии, за исключением микоплазм, не содержат стеринов. Фосфолипиды мембран грамположит. бактерий представлены гл. обр. фосфатидилглицерином и его ами-ноациальными производными, а также дифосфатидилгли-церином. В небольшом кол-ве в этих мембранах нередко встречается фосфатидилинозит. У грамотрицат. микроорганизмов в составе мембранных фосфолипидов преобладает фосфатидилэтаноламин. Фосфатидилхолин в бактериальных мембранах либо совсем не содержится, либо присутствует в малых кол-вах. Содержание фосфатидилсерина в этих мембранах обычно также незначительно. Широко представлены в бактериальных мембранах разл. гликозил-диацилглицерины. [c.29]

    Н. действует против патогенных грибов, особенно грибов рода andida. В отношении бактерА неактивен. Механизм противогрибкового действия И. объясняется избират. гидрофобным связыванием со стеринами мембран грибковых клеток. Это сопровождается нарушением мембранной проницаемости, потерей клеткой низкомол. в-в (в Частности, коферментов) и белков, что приводит к йарушенню процессов синтеза в клетке и ее гибели. Избирательность действия полиеновых антибиотиков связывают с тем, что клеточные мембраны грибов, в отличие от клеточных мембран млекопитающих, содержат преим. эргостерин, а не холестерин. [c.254]

    Предприняты попытки встраивания молекул пигмента в искусственные системы и повыщения эффективности их использования. В частности, растущие бактерии Н. каЬЫит переносят в мелкие водоемы с высокой концентрацией КаС1 и других минеральных солей, в которых исключается загрязнение. У некоторых щтаммов половина клеточной мембраны покрыта пурпурным пигментом, и из 10 л бактериальной культуры можно получить 0,5 г пурпурных мембран. В таких биомембранах содержится до 100000 молекул родопсина. Биомембраны фиксируют на особой подложке, которая должна обладать всеми свойствами, необходимыми для обеспечения тока протонов, а не других ионов. В частности, для этих целей вполне пригодны пористые подложки, пропитанные липидами, которые, сливаясь с мембраной, сплощным слоем покрывают поверхность фильтра. Мембранные фрагменты можно смещивать и с акриламидом с образованием геля. Вместо создания плотных слоев молекул бактериородопсин и липиды могут создавать протеолипосомы, которые встраивают в структуры, обеспечивающие эффективное перекачивание протонов. [c.27]

    Практически общий способ трансформации и трансфекции основан на том, что при обработке клеток бактерий a l2 их мембрана становится проницаемой для ДНК. Однако эффективность проникновения экзогенной ДНК в клетку довольно низка. Поэтому среди бактерий, подвергшихся трансформации, только небольшая часть оказывается трансформированной. Отделение ее от общей массы осуществляется в процессе клонирования. Для клонирования бактериальную суспензию определенной концентрации выливают на твердую питательную среду, например на агар с питательными добавками в чашке Петри из расчета 5—10 бактерий на 1 см поверхности. Бактериальная клетка на поверхности агара начинает делиться с образованием в итоге маленькой колонии, похожей на шляпку гриба. Эта колония называется клоном, причем из каждой клетки образуется свой клон, все клетки которого имеют свойства бактерии-родоначальника. [c.121]

    Процедура вьщеления ДНК в клетки дрожжей довольно проста. Обычно целлюлозную клеточную стенку удаляют обработкой ферментами, получая так называемые сферопласты. Их инкубируют с ДНК в присутствии СаС и полиэтиленгликоля. Мембрана при этом становится проницаемой для ДНК. Дальнейшая ин( а-ция сферопластов в среде с агаром восстанавливает клеточную стенку. Селекция дрожжевых клонов, трансформированных рекомбинантными плазмидами, основана на применении в качестве клеток-хозяев определенных мутантов, не способных расти на среде, в которой отсутствует тот или иной питательный компонент. Векторная плазмида содержит гены, которые при попадании в клетку-хозяина придают ей этот недостаюший признак. Трансформанты легко отбираются по их способности давать колонии на обедненной среде. Применяя приемы, аналогичные использовавшимся при клонировании в бактериях, удается достичь синтеза чужеродных белков в дрожжевых клетках. Эти клетки подобно В. subtilis секретируют большое количество белка во внеклеточную среду, что используется также для секреции чужеродных белков, например интерферона человека (с. 43). [c.125]

    По имеющимся данным, мидии влияют на плотность и прозрачность воды. Они обладают высокой фильтрационной способностью. По расчетам, мидиевое поселение северо-западной части Черного моря способно профильтровать за сутки 134 км воды. Мидии способствуют также уменьшению нефтяного запаха в воде и снижают ее окисляемость при концентрации нефти, не препятствующей их нормальной фильтрации. После мидий нефть выходит в связанном виде с продуктами выделения, что в некоторой степени исключает вторичное загрязнение морской воды [93]. О способности мидий отфильтровывать из морской воды нефть упоминается и в работе [61]. Предполагается участие мидий в непосредственном метаболизме углеводородов, который может идти за счет деятельности бактерий в кишечнике моллюсков, выборочное удаление через мембраны и т.п. [c.61]

    Подобно микоплазмам, клетки Е. oli окружены тонкой ( 8 нм) мембраной, в состав которой входят белки ( 50%) и липиды ( 50%) -Под электронным микроскопом окрашенная (например, перманганатом) мембрана имеет внд двух тончайших ( 2,0 нм) темных линий, разделенных неокрашиваемым слоем ( 3,5 нм) (рис. 1-2,6). Мембраны примерно такой толщины и таким же образом прокрашивающиеся имеются во всех клетках, как у бактерий, так и у эукариот. [c.21]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]


Смотреть страницы где упоминается термин Бактерии мембраны: [c.282]    [c.160]    [c.145]    [c.7]    [c.99]    [c.140]    [c.303]    [c.68]    [c.258]    [c.348]    [c.310]    [c.318]    [c.31]    [c.603]    [c.468]    [c.468]    [c.602]    [c.225]    [c.17]   
Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.8 ]

Молекулярная биология клетки Т.3 Изд.2 (1994) -- [ c.8 ]




ПОИСК







© 2025 chem21.info Реклама на сайте