Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома нормальные

Рис. 20.10. Генетическая организация аллелей генов онихоартроза и групп крови ABO у членов родословной, приведенной на рис. 20.9, при условии сцепления этих двух локусов. Использованы сокращенные обозначения аллелей групп крови системы ABO О соответствует АВ0 0, а 5 — АВО В. Рецессивный ( нормальный ) и доминантный ( патологический ) аллели локуса наследственного онихоартроза обозначены Nu D соответственно. Генотип отца (1-2) может находиться в любой из двух фаз (фаза 1, фаза 2). Хромосомы отца и хромосомы, унаследованные от него детьми, выделены синим цветом, хромосомы матери (1-1) и хромосомы, унаследованные от нее, — светло-коричневым. Отмечено, какие из хромосом, полученных от отца, являются нерекомбинантными (NR) или рекомбинантными (R) для фазы 1 и фазы 2. Рис. 20.10. <a href="/info/1338922">Генетическая организация</a> <a href="/info/1339029">аллелей генов</a> онихоартроза и <a href="/info/97313">групп крови</a> ABO у членов родословной, приведенной на рис. 20.9, при условии сцепления этих <a href="/info/1696521">двух</a> локусов. <a href="/info/1542195">Использованы сокращенные</a> обозначения <a href="/info/1433079">аллелей групп крови</a> системы ABO О соответствует АВ0 0, а 5 — АВО В. Рецессивный ( нормальный ) и доминантный ( патологический ) <a href="/info/1394748">аллели локуса</a> наследственного онихоартроза обозначены Nu D соответственно. Генотип отца (1-2) может находиться в любой из <a href="/info/1696521">двух</a> фаз (фаза 1, фаза 2). Хромосомы отца и хромосомы, унаследованные от него детьми, выделены синим цветом, <a href="/info/1877721">хромосомы матери</a> (1-1) и хромосомы, унаследованные от нее, — <a href="/info/590001">светло-коричневым</a>. Отмечено, какие из хромосом, полученных от отца, являются нерекомбинантными (NR) или рекомбинантными (R) для фазы 1 и фазы 2.

    О генах, расположенных в половых хромосомах, говорят, что они сцеплены с полом. Поскольку большая часть таких генов локализована в длинной Х-хромосоме, а не в Y-хромосоме, генетические дефекты проявляются у мужчин, имеющих только одну копию этих генов, гораздо чаще, чем у женщин. Так, гемофилия и цветовая слепота поражают по преимуществу мужчин. Женщины в большинстве случаев гетерозиготны по дефектному гену, т. е. у них имеется нормальный ген на второй Х-хромосоме . [c.42]

    В хромосоме нормальной клетки существует значительно больше ДНК, чем когда-либо используется для транскрипции. Это, вероятно, обусловлено двумя уровнями контроля. Надо полагать, что хромосомные белки разрешают транскрипцию некоторого количества ДНК, но не всего запаса. Эта ситуация будет, вероятно, неизменной для всех клеток данного вида. С другой стороны, в клетках, выполняющих разные функции внутри вида, а также внутри той же самой клетки, но на разных стадиях ее жизненного цикла или в соответствии с изменениями в окружающей ее среде, используются различные гены. Этот процесс рассматривается как генная регуляция и, возможно, он осуществляется в результате контроля за доступом РНК-полимеразы к хромосомной ДНК. [c.203]

    Генная инженерия - целенаправленное изменение генов в составе молекулы ДНК с целью получения новых белков и пептидов. Когда мы говорим о мутациях, то рассматриваем изменения генов, которые происходят случайно или под влиянием различных факторов, часто весьма нежелательных. Но в хромосомах и генах постоянно происходят нормальные процессы обмена отдельными участками хромосом, отдельными генами, их переме- [c.60]

    I Кольцевая хромосома нормального фага X может образовать синапс в любом участке своего генома (за исключением области гена Л) с гомологичной областью профага y dg, который уже включился в хромосому реципиента в результате процесса, описанного на фиг. 174. [c.351]

    Гомологические хромосомы — парные, соответствующие, полученные при оплодотворении хромосомы, нормально конъюгирующие между собой в мейозе. [c.342]

    Примечание + - сохранившаяся хромосома нормального размера - -утраченная хромосома Д - хромосома, сохранившая длинное плечо К - хромосома, сохранившая короткое плечо. [c.67]

    В нормальных природных условиях гены и наборы генов претерпевают рекомбинацию в ходе таких биологических процессов, как трансформация бактерий, вирусная трансдукция, конъюгация бактерий и обмен генов при слиянии половых эукариотических клеток. Гены и группы генов могут также перемещаться с одного места на другое как в пределах одной и той же хромосомы, так и между разными хромосомами. Например, белки-антитела, которые вырабатываются клетками крови (иммуноцитами) позвоночных против миллионов самых разных, не содержащихся в организме [c.991]


    Нормальная соматическая клетка содержит два гомологичных набора хромосом (см. гл. 14) в каждой паре гомологов одна хромосома происходит [c.82]

    Хромосомы претерпевают также изменения и перестройки другого рода, происходящие в процессе их нормального биологического функционирования. Слияние яйцеклетки со сперматозоидом у эукариот сопровождается генетической рекомбинацией, что приводит к появлению потомства с новой комбинацией генов. Кроме того, гены и части генов могут перемещаться из одного места хромосомы в другие. Гены могут также обмениваться и ре комбинировать при заражении клеток вирусами. [c.964]

    До настоящего момента мы обсуждали такие изменения генов, которые возникают самопроизвольно, случайно или под действием факторов окружающей среды. Рассмотрим теперь изменения в генах и хромосомах, представляющие собой нормальные события в жизни клеток. [c.974]

    В гл. XIII мы уже указывали, что некоторые патологические отклонения от нормальной дифференциации пола связаны с отклонениями в числе половых хромосом. Так, нормальное число хромосом 46 в случае половых хромосом типа ХО будет равно 45, в случае XXX и ХХ — 47 и, наконец, в случае XXXV — 48. Что же касается аутосом человека, то в течение двух последних лет было обнаружено несколько различных типов трисомиков. Так, разные исследователи выяснили, что при болезни Дауна 2п = 47, причем лишняя хромосома— одна из самых маленьких аутосом (22-я). Недавно были описаны трисомики по 17-й хромосоме и по одной из хромосом группы 13—15 (см. фиг. 49,5). В каждом из этих случаев трисомия была связана с характерным спектром нарушений развития и умственной отсталостью. Надо еще выяснить, являются ли лишние хромосомы нормальными или же они несут хромосомные перестройки это удастся установить лишь в том случае, когда станет возможным анализ мейоза у подобных людей. Кажется вероятным, что люди с болезнью Дауна и с другими отклонениями от нормы представляют собой подлинных трисомиков и что их аномальные признаки обусловлены наличием лишних хромосом (см. стр. 346—348). [c.443]

    У высших организмов ДНК находится в хромосомах. Хромосомы имеют разную форму, которая зависит от центрической перетяжки. В каждой хромосоме содержится гигантская молекула ДНК (ММ 101 Да, линейная длина — несколько сантиметров), которая составляет основу хроматина. Хроматин — комплекс ДНК с РНК и белками (ДНК — 30-45%, гистоны — 30-50, негистоновые белки - 4-30, РНК - до 10%). Структурная организация хроматина такова, что позволяет использовать одну и ту же генетическую информацию ДНК, присущую данному виду организма, по-разному в специализированных клетках. При этом основная часть хроматина не активна. Она содержит плотно упакованную ДНК. Активный хроматин составляет в разных клетках от 2 до 11%. Упаковка (компактизация) ДНК следующая. Нуклеосома содержит отрезок двуспиральной ДНК, равный по протяженности 140 парам оснований, обвитый в 1,5 оборота вокруг ядра, состоящего из гистонов (2Н1, 2Н2а, 2Н2в и 2Н3). Степень компактизации — 5 раз. Примерно 90% ДНК входит в состав нуклеосом, 10% содержится в перемычках между нуклеосомами (30-60 пар, связанных с гистоном Н ). Считают, что нуклеосомы содержат фрагменты молчащего хроматина, а перемычки — активного. При развертывании нуклеосомы весь хроматин активный. Диско-идные нуклеосомы имеют диаметр 10 нм и высоту 5 нм. Из них образуются фибриллы. Фибриллы толщиной Ю нм состоят из ряда нуклеосом, касающихся друг друга своими краями и ориентированных плоскими поверхностями вдоль оси фибрилл. Фибриллы скручиваются в спираль, на виток которой приходится 6-7 нуклеосом. В результате образуется хроматиновое волокно диаметром 30 нм. Для того чтобы образовалась митотическая хромосома нормального размера, волокно такого диаметра должно подвергнуться дополнительной компактизации с уменьшением результирующей длины в 100 раз. [c.293]

    Между хромосомами нормального фага % и дефектного профага >.dg в области их синапса может произойти кроссинговер, в результате чего образуется непрерывная генетическая структура, содержащая нормальный и дефектный профаги, включенные между двумя генами gal. Индукция ультрафиолетом бактерии, несущей такую хромосому, ведет к обращению лроцессов, изображенных на фиг. 173 174. что приводит к образованию HFT-лизата, содержащего равное количество нормального фага % и трансдуцирующего фага kdg. [c.351]

    Самцы дрозофилы, лишенные У-хромосомы, внешне нормальны, но стерильны. Самки с двумя Х-хромосомами и одной Y-хромосомой нормальны и плодовиты. Бриджес скрещивал таких самок (XXY) с нормальными красноглазыми самцами (XY). Он обнаружил, что около 4% самок в потомстве от таких скрещиваний имеют белые глаза, а около 4% самцов-красные глаза остальные 96% потомства составляли красноглазые самки и белоглазые самцы. Бриджес предположил, что эти 4% составляют самки и самцы, возникающие снова в результате нерасхо-ждения Х-хромосом в мейозе у самок. Он назвал такое нерасхождение вторичным, поскольку оно происходит в потомстве самок, появившихся в результате первичного нерасхождения Х-хромосом (и потому обладающих двумя Х-хромосомами и одной Y-хромосомой) (рис. 3.8). Вторичное нерасхождение происходит с частотой около 1 25, т. е. примерно в 100 раз чаще, чем первичное нерасхождение (1 2000). [c.72]

    Электронная микроскопия хроматина кроме нуклеосом выявила еще две структуры высшего порядка—фибриллы диаметром 10 нм и волокна диаметром 25—30 нм. Дисковидные нуклеосомы (см. выше) имеют диаметр 10 нм и высоту 5 нм. По-видимому, фибриллы толщиной 10 нм состоят из ряда нуклеосом, касающихся друг друга своими краями и ориентированных плоскими поверхностями вдоль оси фибриллы (рис. 38.3). Вероятно, фибриллы тоже скручиваются в спираль, на виток которой приходится 6—7 нуклеосом. В результате образуется хроматиновое волокно диаметром 30 нм (рис. 38.4). Витки такой суперспирали должны быть достаточно плоскими, а плоские поверхности нуклеосом последующих витков—параллельными друг другу. Н1-гистоны, по всей вероятности, стабилизируют структуру волокна, но их расположение так же, как и длина спейсерных участков ДНК, точно не определены. Вероятно, нуклеосомы способны формировать еще ряд компактных суперструктур. Для того чтобы образовалась митотическая хромосома нормального размера, волокно диаметром 30 нм должно подвергнуться дополнительной ком-пактизации с уменьшением результирующей длины еще в 100 раз (см. ниже). [c.66]


    ДНК производит ДНК, производит РНК, производит Белок , Это утверждение говорит о том, что носителем наследственной информации является ДНК. В конечном счете этот молекулярный материал ответственен за точную передачу информации от родительских клеток к дочерним и за контроль над всей совокупностью химической активности в нормальной клетке, что осуществляется посредством каталитических белков. С точки зрения генетиков, хромосомы содержат дискретную линейную нуклеиновую кислоту, каждый из участков которой, называемых генами, ответственен за образование специфического клеточного продукта. Эти продукты генов являются либо полипептидами, либо структурными молегу- [c.197]

    Необходимо также подчеркнуть, что при работе с линией клеток ового вида, хромосомы нормального кариотипа которого недоста-эчно знакомы исследователю, в процессе составления рядов иден-ичности желательно оперировать всеми хромосомами, включая нормальные. Указанный прием, а также постоянное использование анка нормальных хромосом позволят свести к минимуму ошибоч-ую идентификацию как нормальных, так и маркерных хромосом кариотипах. [c.89]

    У тетраплоидного растения (ААВВ), имеющего два набора хромосом А и два набора хромосом В, в мейозе происходит нормальная конъюгация хромосом с образованием бивалентов А/А и В/В, после чего хромосомы нормально расходятся к полюсам, тэ к что получаются гаметы (АВ), сбалансированные как по хромосомам, так и по генам. Такой аллотетраплокд плодовит. Для него характерно собственное гибридное сочетание морфологиче ских, физиологических и экологических признаков, отличное от тех сочетаний, которыми обладали и тот и другой диплоидные родительские виды. И он размножается в чистоте, сохраняя свою промежуточную гибридную конституцию, благодаря внутриге-номной конъюгации и расхождению хромосом А/А и В/В) в мейозе. [c.261]

    Какие химические процессы лежат в основе супрессии (подавления) одной мутации другой мутацией, локализованной в иной точке хромосомы Однозначного ответа на этот вопрос дать нельзя. Редко мутация супрессируется другой мутацией, локализованной в пределах того же самого гена. Такой эффект может быть назван внутригенной комплементацией. Предположим, что мутация приводит к такой аминокислотной замене, которая нарушает стабильность структуры или функцию белка. Возможно, что мутация в другом сайте, захватывая остаток, взаимодействующий с замещенной аминокислотой, меняет характер взаимодействия двух остатков, что приводит к восстановлению функциональной активности белка. Так, например, если боковая цепь первой аминокислоты мала, а в результате мутации она замещается на более длинную боковую цепь, то вторая мутация, приводящая к уменьшению размера другой боковой цепи, может позволить образующемуся белку свертываться и функционировать подобно нормальному белку. Такой случай был обнаружен среди мутантов триптофансинтетазы [144]. Мутанты этого белка, у которых Gly-211 был заменен на Glu нли Туг-175— на ys, синтезировали неактивные ферменты, тогда как двойной мутант, т. е. мутант, в котором имели место обе эти замены, синтезировал активную триптофансинтетазу. Считают, что в большинстве случаев внутригенной супрессии происходят изменения во взаимодействии субъединиц олигомерных белков. [c.255]

    Легкость, с которой чужеродная ДНК встраивается в хромосомы бактб рий, поразительна. Происходит ли то же самое в организме человека На этот вопрос можно ответить утвердительно. Однако, в какой степени клетки человека устойчивы к изменениям, обусловленным внедрением в них вирусов, не ясно. Нам известно, что вирусы, вызывающие опухоли (онкогенные), могут включаться в геном клеток животных. Простейшими из них являются вирус полиомы и SV40 (дополнение 4-В). После включения вирусной ДНК в хромосому клетки-хозяина некоторые вирусные гены продолжают транскрибироваться. Другие находятся в неактивном состоянии, как в случае с фагом %. В редких случаях включение вирусной ДНК в геном клетки-хозяина приводит к трансформации клетки в опухолеподобное состояние. Связано ли это с действием специфических продуктов вирусных генов, с изменением фенотипического выражения генов хозяина или же с мутациями (как это имеет место при включении фага % в хромосому Е. соН), не известно. Ясно лишь, что свойства поверхностей трансформированных клеток при этом изменяются. Это в свою очередь приводит уменьшению контактного ингибирования (гл. 1, разд. Д, 3, в), ив результате начинается глубокое прорастание трансформированных клеток. Таким образом, основная отличительная черта опухолей может быть обусловлена включением вирусной ДНК в геном нормальной клетки [234, 235]. [c.288]

    Две фундаментальные цели генной инженерии заключаются в исправлении генетических дефектов, таких как серповидно-клеточная анемия (точечная мутация в гемоглобине), и в добавлении нормальных генов к другим, например включение гена нитроге-назы в хромосомы пшеницы. Сейчас кажется, что реализация таких целей уже в руках исследователя ген инсулина уже включен в бактерию Е. oli [13]. [c.213]

    В ходе развития клетки конформации гистонов и НГБ и их ДНК-комплексов изменяются и геном испытывает функциональные изменения, становясь более или менее доступным действию регуляторных белков цитоплазмы. На гигантских хромосомах двукрылых насекомых на определенной стадии развития появляются пуффы — вздутые участки, являющиеся локусами наиболее интенсивного синтеза РНК. В этих участках происходят химические и конформационные изменения гистонов, что и обеспечивает изменение функциональности соответствующих генов. Но-видимому, в пуффах гистоны слабее связаны с ДНК, они более доступны действию протеаз и легче отделяются. Соответственно в пуффах гистоны не мешают работе РНК-полимеразы. В нормальных условиях гистоны препятствуют транскрипции. [c.296]

    Для возникновения аллелей достаточно, чтобы два гомологичных гена различались всего одним нуклеотидом. Во многих случаях замена одного нуклеотида приводит к значительным различиям между продуктом измененного гена и нормальным белком. Однако множество однонуклеотидных замен не приводит к синтезу измененных генных продуктов, а кроме того, замены могут происходить в некодирующих областях ДНК и не приводить ни к каким последствиям. Такие безвредные замены, распределяясь по всей длине хромосомы, порождают полиморфные сайты (маркерные локусы, генетические маркеры), которые можно использовать для генетического картирования. Но сначала эти полиморфные сайты нужно обнаружить. [c.451]

    В нескольких случаях дети родителя, больного BFN , несут хромосому (8,2) (например, IV-7 и IV-11), но никаких симптомов заболевания у них не обнаруживается. В обоих упомянутых выше случаях можно определить происхождение данной хромосомы. Например, индивид IV-7 унаследовал хромосому (14,1) от больного отца, а хромосому (8,2) с нормальным геном BFN - от здоровой матери. Сложнее объяснить генотипы индивидов IV-9 и V-1. С одной стороны, они могли получить хромосому (8,2) с нормальным геном BFN от здоровых предков. [c.457]

    Нарушить последовательность процессов репликации бактериальной хромосомы и клеточного деления также можно, выращивая бактерии при разной температуре. Культивирование Ba illus subtilis на богатой питательной среде при 37 °С приводит к интенсивному делению бактериальной хромосомы и росту клеток, в результате чего в культуре образуются нитевидные клетки, содержащие множество хромосомных копий с отсутствующими совсем или недосформированными (незамкнутыми) поперечными перегородками. При замедлении скорости роста наблюдается деление нитевидных клеток, приводящее к образованию бактериальных клеток нормальной длины. [c.61]

    ОТ отца, а другая-от матери. П )и нормальном митотическом делении материнская и отцовская хромосомы не обмениваются генетическим материалом, и поэтому каждая из дочерних клеток получает от родителей полный ин-такгный набор отцовских генов и такой же набор материнских. В норме обмен генами между материнским и отцовским гомологами происходит только в половых клетках при кроссинговере во время мейоза. Иногда, однако, кроссинговер между гомологами происходит и при делении обычных соматических клеток. Это называют митотической рекомбинацшей. Если материнская и отцовская хромосомы обмениваются идентичными участками, т.е. если клетка по этим участкам гомозиготна, то такой обмен остается незамеченным. Но если обмениваться будут участки, по которым клетка гетерозиготна, то может возникнуть выраженный фенотипический эффект. В результате рекомбинации могут, например, появиться дочерние клетки, имеющие различную пигментацию, и тогда при дальнейшем размножении эти клетки образуют участки ткани разного цвета. Механизм этого иллюстрируют схемы на рис. 15-33, где показано, как после единичного акта митотической рекомбинации на фоне нормальных клеток может появиться двойное пятно, образованное двумя клонами клеток с различными генетическими маркерами. [c.83]

    На клеточном уровне точкой приложения цитотоксического действия таксола служит веретено — субклеточная структура, обеспечивающая расхождение хромосом во время клеточного деления (митоза). Таксол блокирует нормальное функционирование веретена, в результате чего хромосомы не расходятся и начавшееся деление клетки не завершается. Вещества с подобным типом действия называются митозными ядами. [c.199]

Рис. 14-19. Схема образования синаптонемального комплекса между нормальной хромосомой и ее гомологом, имеющим пере-вертутын участок. Подобные структуры указывают на то, что гомологичные хромосомы конъюгируют <5лагодаря локальному сходству определенньпс участков. Рис. 14-19. <a href="/info/18430">Схема образования</a> <a href="/info/103591">синаптонемального комплекса</a> <a href="/info/1477816">между нормальной</a> хромосомой и ее гомологом, имеющим пере-вертутын участок. <a href="/info/1409177">Подобные структуры</a> указывают на то, что <a href="/info/509331">гомологичные хромосомы</a> конъюгируют <5лагодаря локальному сходству определенньпс участков.
    Кроссинговер не только способствует перетасовке генов, но, по-видимому, играет также важнейшую роль при расхождшии двух гомологов в дочерние ядра Дело в том, что именю хиазмы удерживают вместе материнские и отцовские гомологи до анафазы 1, выполняя здесь ту же функцию, что и центромеры в обычном митозе. У мутантных организмов с недостаточностью кроссинговеров в мейозе у отдельных пар хромосом отсутствуют хиазмы в метафазе I, и такие хромосомы не способны нормально расходиться. В результате значительная доля образующихся гамет содержит слишком много илн слишком мало хромосом. [c.25]

    И в самом деле, имеются прямые экспериментальные данные о том, что дифференцировкой спермиев управляют продукты диплоидного генома. Часть таких данных была получена при исследовании мутантов Drosophila, у которых в процессе мейоза хромосомы неравномерно распределяются между дочерними клетками в результате одни сперматозоиды содержат слишком мало хромосом, другие-слишком много, а у некоторых их вообще нет. Поразительно то, что дифференцировка всех этих клеток, даже тех, в которых вовсе нет хромосом, протекает нормально (рис. 14-41). Этот факт можно объяснить на основе упомянутого выше предположения продукты недостающих хромосом могли бы доставляться путем диффузии по цитоплазматическим мостикам, связывающим соседние клетки. Не исключено и иное объяснение в диплоидных сперматогониях или сперматоцитах первого порядка [c.39]

    Ряс. 35-33. Сравнение митотической рекомбинации и нормального митоза. СЬчов-ские хромосомы представлены серыми, материнские-белыми. Предположим, что геном содержит локус, определяющий пигментацию, с двумя аллелями К (краснын квадратик) и г (белый квадратик), поэтому гомозиготные клетки К/К изображены темно-розовыми, гетерозиготные К/г-светло-розовыми н гомозиготные г/г-белыми. А. В нормальном цикле деления материнская хромосома гетерозиготной клетки удваивается, образуя две хроматиды, соединенные в области центромеры обе хроматиды несут аллель К. Подобным же образом удваивается отцовская хромосома, образуя тоже две хроматиды, соединенные в области центромеры н несущие аллель г. В митозе две хроматиды каждой пары расходятся, и каждая из дочерних клеток получает случайным образом ту или иную из двух идентичных хроматид как первой, так и второй пары поэтому каждая дочерняя клегка наследует гетерозиготный генотип К/г. [c.84]

    Функционирование многоклеточного организма, каким является высшее растение, есть результат взаимодействия ряда регуляторных систем, которые схематически могут быть расположены в следуюш,ей усложняюш,ейся последовательности регуляторы клетки (гена, хромосомы, ядра, цитоплазмы), ткани и, наконец, регуляторы целого организма. Эти своеобразные этажи регуляции представляют собой схему для изучения регуляторных систем в биологическом объекте. Согласованное функционирование регуляторных систем на всех этажах иерархической лестницы целого организма поддерживает его нормальную жизнедеятельность и обеспечивает его ответную реакцию на воздействие внешней среды. Регуляторные системы более высоких этажей организма представляют собой механизмы, эволюционно сформированные на основе систем управления низших этажей , однако у этих высоких этажей появляются и специфические, только им присущие особенности регуляции. Так, способность координации роста органов, регулируемая у целого растения с помощью комплекса фитогормонов, это та специфическая система, которая присуща главным образом только верхнему, организмен-ному уровню регуляции. При переходе от нижнего уровня к верхнему старые механизмы регуляции не исчезают, а совершенствуются, что приводит к возникновению качественно новых систем управления, одной из которых и является гормональный механизм, функционирующий в растении. Формирование таких специфических метаболитов, как гормоны, есть одно из звеньев эволюции регуляторных систем. [c.7]

    Обратимся теперь к следующему основному этапу в передаче генетической информации, а именно к транскрипции содержащейся в ДНК генетической информации в форму РНК. В этом процессе с помощью ферментной системы происходит синтез цепи РНК, нуклеотидная последовательность которой комплементарна последовательности одной из цепей ДНК. Транскрипция должна осуществляться точно, поскольку клетке нужны белки с нормальной генетически детерминированной последовательностью аминокислот. В результате транскрипции образуются три класса РНК. Во-первых, это матричная РНК (мРНК), которая поступает в рибосомы и там направляет синтез одного или нескольких полипептидов, аминокислотная последовательность которых была закодирована геном или группой генов в хромосоме. Около 90-95% хромосомы Е. oli кодирует матричные РНК. Остальная часть -хромосомы кодирует транспортные и рибосомные РНК, а также включает регуляторные последовательности, лидеры, спейсеры и хвостовые последовательности. [c.909]

    Нормальный биологический обмен между генами или объединение генов из разньк источников с образованием измененной хромосомы, способной после этого реплицироваться, транскрибироваться и транслироваться, называется генетической рекомбинацией. Она встречается в различных биологических ситуациях. Мы уже детально познакомились с одним типом генетической рекомбина-ции-с трансформацией бактерий под действием экзогенной ДНК, которая имела место в классическом эксперименте Эвери, Мак-Леода и Мак-Карти (рис. 27-6). Напомним, что в этом эксперименте ДНК из вирулентного штамма пневмококка попадала в клетки невирулентного штамма и превращала этот штамм в вирулентный. Очевидно, ген вирулентности, присутствующий в ДНК донорной клетки, включается в геном ре-ципиентной клетки. Такая трансформация бактериальных клеток, реализуемая вследствие рекомбинации генов, может наблюдаться не только в лаборатории, но и в естественньк условиях. [c.974]

    ЛИ, же дело сводится к восстановлению исходного фенотипа (например, к возобновлению синтеза нормально функционирующего фермента), то говорят о реверсии или супрессорной мутации и соответственно о ревер-тантах. Супрессорные мутации могут происходить как в исходном гене, так и в каких-либо других участках хромосомы интрагенные и эк страгенные супрессорные мутации). [c.443]


Смотреть страницы где упоминается термин Хромосома нормальные: [c.163]    [c.140]    [c.72]    [c.215]    [c.240]    [c.72]    [c.215]    [c.372]    [c.198]    [c.25]    [c.39]    [c.137]    [c.645]   
Молекулярная генетика (1974) -- [ c.503 ]




ПОИСК





Смотрите так же термины и статьи:

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте