Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антигены белков

    ЦИИ трансляции не проходит далее сквозь мембрану, а остается вставленным в мембрану как трансмембранный белок. Можно привести еще ряд аналогичных примеров интегральных мембранных белков, синтезируемых с отщепляемой N-концевой сигнальной последовательностью (гемагглютинин вируса гриппа, тяжелая цепь антигенов гистосовместимости А и В, гликофорин А красных кровяных клеток, цитохром Р-448 и т. д.). Получается, что в синтезе как секреторных, так и интегральных мембранных белков используется один и тот же механизм сигнального пептид-мембранного узнавания, вхождения растущего пептида в мембрану и затем отщепления N-концевого сигнального фрагмента, но терминация трансляции может приводить либо к прохождению конечного продукта сквозь мембрану в случае водорастворимых секреторных белков, либо к его солюбилизации в мембране в случае более гидрофобных белков, предназначенных для внутримембранной локализации. Белки, оставшиеся в мембране. эндоплазматического ретикулума, далее могут подвергаться посттрансляционному транспорту через секреторные пузырьки в мембранные структуры других типов, включая клеточную плазматическую мембрану. [c.281]


    Биохнмич. эффекты высоких Д. При Д в неск. сотен МПа происходит денатурация белков, при этом меняются их антигенные св-ва, снижается активность токсинов. Особенно чувствительны к Д. процессы образования связей белок-лиганд и белок-белок. Так, для белков характерно значив уменьшение скорости ассоциации с повышением Д. (AV положительны и могут исчисляться сотнями см /моль). Денатурирующее влияние Д. зависит от природы белка, т-ры и pH среды. Напр., овальбумин необратимо коагулирует при 800 МПа, тогда как р-ры альбумина не претерпевают изменений даже при 1,9 ГПа. Д. может препятствовать тепловой денатурации белка и даже вызывать ренатурацию белка, де- [c.621]

    ТРАНСПЛАНТАЦИОННЫЙ АНТИГЕН. Белок, кодируемый главным локусом гистосовместимости, присутствует на поверхности всех клеток млекопитающих, участвует во взаимодействии между лимфоцитами. [c.527]

    По мере развития иммунологии оказалось, что для иммунизации часто нужен не целый вирус или болезнетворный микроб, а лишь его антигенная часть, способная вызвать образование антител. Такая часть является белком - субъединицей вируса или бактерии, содержащие ее вакцины называют субъединичными. Генная инженерия открыла простой путь получения таких вакцин. Из генома вируса выделяют ген белка с антигенной активностью, встраивают его в вектор и размножают этот белок в бактериальной клетке. Производство такого белка в отличие от получения вируса не только дешево, но и безопасно, сама вакцина также безопасна и не содержит ничего лишнего. [c.62]

    Главное внимание исследователей было сосредоточено на попытках локализовать методом иммунной электронной микроскопии белки 30S субчастицы Е. соИ. Однако, несмотря на возможность получения специфических антител ко всем 21 индивидуальным белкам, эта задача оказалась не простой, и метод дал много ложных локализаций. Дело в том, что этот метод, кажущийся столь прямым и демонстративным, таит опасности различных артефактов, обусловленных недостаточной очисткой антител, неспецифическим присоединением антител к некоторым участкам поверхности частиц, искажением специфического положения антитела на частице вследствие ее ориентации на подложке и т. д. Тем не менее, в настоящее время можно выделить наиболее надежные результаты в отнощении 30S субчастицы. Первой такой надежной локализацией было, по-видимому, определение положения белка S14 на головке частицы (рис. 65) антигенный детерминант белка был найден на поверхности головки со стороны, противоположной боковому выступу ( платформе ) 30S субчастицы (рис. 68). Недалеко от него были локализованы также антигенные детерминанты белков S10 и S19. Ниже этой группы белков, в районе борозды, разделяющей головку и тело, был локализован белок S3, а еще ниже, близко к борозде, но уже на теле субчастицы, белок S5 (рис. 68). Белки S6 и S11 были локализованы по другую сторону 30S субчастицы, а именно на ее боковом выступе ( платформе ). Белок S8, согласно иммунной электронной микроскопии, располагается также у бокового выступа, где-то между ним и телом, на внешней (обращенной от 50S субчастицы) стороне 30S субчастицы. [c.112]


    Защитная функция. Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков. Высокая специфичность взаимодействия антител с антигенами (чужеродными веществами) по типу белок-белковое взаимодействие способствует узнаванию и нейтрализации биологического действия антигенов. Защитная функция белков проявляется и в способности ряда белков плазмы крови, в частности фибриногена, к свертыванию. В результате свертывания фибриногена образуется сгусток крови, предохраняющий от потери крови при ранениях. [c.21]

    Лимфоциты — строго специализированные клетки, каждая клетка вырабатывает только один тип иммуноглобулинов. Будучи однажды включенным на синтез антител, лимфоцит многие годы, а иногда и всю жизнь, поддерживает в крови высокое содержание антител этого типа. Поэтому, попав повторно в организм, данный антиген (белок оболочки вируса или бактерии, или вообще любой белок) встречает уже целую армию антител, быстро узнающих в нем чужака и с помощью специальной системы уничтожающую этот белок, а заодно и всю бактерию или вирус, к которым он принадлежит. [c.82]

    Белок содержит несколько разных антигенных детерминант. Некоторые белки могут иметь одну и ту же антигенную детерминанту в нескольких экземплярах (повторные антигенные детерминанты), как, например, в случае белка, состоящего из нескольких идентичных субъединиц. Число антигенных детерминант одного белка можно приблизительно установить по числу антител, которые способны связываться с молекулой антигену это число есть валентность данного антигена. Однако при стерическом несоответствии возможны и такие антитела, которые не в состоянии связываться с эпитопом антигена, и обычно валентность меньше числа антигенных детерминант [108]. В целом, как правило, для белков можно ожидать одну антигенную детерминанту на каждые 5000 Да молекулярной массы антигена [18]. На основании валентности, установленной для белковых антигенов с возрастающей молекулярной массой [108], можно подсчитать, что, по крайней мере, на одну антигенную детерминанту приходится 2500 Да молекулярной массы антител у рибонуклеазы, 3500 Да у белка вируса табачной мозаики, 8800 Да у овальбумина, [c.91]

    Установлено, что фактором, определяющим антигенную специфичность, является именно радикал К, а белок играет второстепенную роль АТ, полученное в ответ на К—Б (Б — белок), реагирует с К—Б (Б —другой белок), но пе с К —Б. Антиген К—Б дает с соответствующим АТ труднорастворимый осадок. [c.123]

    Применение химерных белков В некоторых случаях конечным продуктом, который предполагается использовать, является сам химерный белок. Например, нередко возникает необходимость в получении антител, узнающих конкретный участок белковой молекулы. Чтобы рещить эту задачу, можно встроить в подходящий вектор сегмент ДНК, кодирующий белковый домен, к которому будут вырабатываться нужные антитела. Образующийся в результате химерный белок и будет служить антигеном. Антитела к стабилизирующему его белковому компоненту, происходящему от хозяйской клетки, можно удалить абсорбцией их на чистом стабилизирующем белке, и тогда останутся только антитела, связывающиеся с нужной аминокислотной последовательностью. [c.113]

    ДНК-иммунизация позволяет не только избежать очистки белковых антигенов, но и индуцировать иммунный ответ, направленный именно на кодируемый плазмидой белок, а не на саму плазмиду. Поэтому один и тот же вектор можно использовать для доставки разных белков или для многократного введения одного и того же гена. [c.233]

    Хайден обратил внимание на белок S-100, концентрация которого в определенной области мозга четко возрастала вО время обучения. Уже долгое время S-100 известен как нейрон-специфичный белок, в еще более высокой концентрации он был найден в глиальных клетках [16]. Название этого белка произошло благодаря его способности растворяться в 100%-ном по насыщению растворе сульфата аммония. Это маленький М 24 000), очень кислый, слабо антигенный белок, преимущественно находящийся в мозге (его концентрация в мозге в. 100 000 раз превышает содержание в других тканях), в основном в белом веществе особенно высока его концентрация в мозжечке. Он также присутствует в периферической нервной системе. Если антисыворотка крысы против S-100 вводится в мозг животного, его способность к обучению значительно уменьшается (рис. 11.9) [17]. [c.344]

    B для аффинной хроматографии антител типа IgG и антигенов. Белок А (мол. масса 42 ООО, выделен из Staphylo o us aureus) иммобилизован на поперечносшитом агарозном геле (см. разд. 30) бромциановым методом. Белок специфически взаимодействует с молекулами иммуноглобулинов IgG некоторых подтипов. Так как взаимодействие белка А с IgG не затрагивает у последних той части молекулы, посредством которой связываются антитела, возникает возможность выделения и очистки антигенов на БСС с адсорбированным IgG соответствующего типа. Элюирование комплекса антиген антитело выполняют с помощью 3 М раствора изотиоцианата калия. [c.227]


    В опытах с комплексным антигеном белок-гатттен, где белок выступал в качестве носителя для гаптена, было показано, что Т-клетки распознают носитель, а В-клетки — гаптен. Несущая часть антигена — это другое название Т-клеточного эпитопа. Т-клеточ-ные эпитопы включают большее число аминокислотных остатков по сравнению с В-клеточными эпитопами и относятся к так называемому линейному типу, поскольку для его распознавания не требуется сохранения пространственной организации. Помимо детерминант, распознаваемых Т-клеточным рецептором, антигенный фрагмент включает участок, взаимодействующий с продуктами МНС. Этот участок получил название агретоп. [c.50]

    Присутствие тах их антител — частая причина ошибок при серологи- ческих тестах, особенно если для инъекции используют неочихцехшый или плохо очищенный препарат и проводят длительные курсы иммунизации. При иммуноэлектрофорезе экстрактов здоровых растеиий китайской капусты удается выявить по крайней мере семь различных антигенов. Белок фракции I обнаруншвается в высоких концентрациях в большинстве растений он легко образует агрегаты, обладает иммуногенностью и серологически сходен у растеиий многих видов [1829]. [c.375]

    Антигенная структура. В составе вируса бешенства обнаружены сердцевинные и поверхностные антигены. Гликопротеидный антиген (белок шипиков) обладает выраженными иммуногенными свойствами. Существуют два вируса бешенства, идентичных по антигенным свойствам дикий, циркулирующий среди животных, патогенный для человека, названный уличным вирусом, и фиксированный вирус (virus fixe), полученный Л. Пастером в лабораторных условиях путем длительных пассажей уличного вируса через мозг кроликов. В связи с утратой последним вирулентности для человека Л. Пастер использовал этот вирус в качестве антирабической вакцины. [c.310]

    Точка начала репликации находится в той же области, что и начало транскрипции ранней и поздней областей. Ранняя область транскрибируется в направлении против часовой стрелки и кодирует Т-антиген (белок А), необходимый для инициирования репликации ДНК. Другой, иммунологически отличный белок - малый (-антиген - также кодируется ранней областью. При синтезе мРНК для Т-антигена происходит вырезание вставочной последовательности из первичного транскринта. [c.187]

    Выполнение работы включало три основных этапа I) направленный синтез высокоспецифических реагентов, являющихся основой получения коньюгатов антигенов, и последующая наработка иммуноспецифических субстанций антител к наркотикам и монодисперсных полимерных суспензий с заданными свойствами реакционно-способных комплексов гаптенов либо их специфических антител с ферментом или их макромолекулярным носителем (белок, полимер) 2) разработка иммунохимического метода анализа для определения опиатов, каннабиноидов и гидазепама на основе полученных реагентов с использованием латексной агглютинации 3) разработка экспериментально-технологического регламента и пакета нормативно-технической документации для выпуска опытно-промышленной серии иммунодиагностикумов для быстрого определения наркотиков в биологической жидкости человека. Создание и испытание опытных серий наборов тест-систем для получения необходимых рекомендаций для внедрения в клиническую практику. [c.200]

    Использование белков-антигенов в качестве лигандов для очистки специфических антител на иммуносорбентах было описано в предыдущей книге этой серии [Остерман, 1983]. Там же была рассмотрена возможность связывания любых антител на матрице, несущей белок А из Staphylo o us aureus. Обе эти системы с полным правол можно включить в перечень аффинных хроматографических систем. Естественно, что иммуносорбенты используются и в обратном варианте, когда с помощью лигандов-антител производится очистка антигенов белковой природы пли гаптенов. [c.362]

    Э. обладают высокой биол. активностью, причем их активные концентрации на 1-3 порядка ниже, чем у др. стероидных гормонов. Для количеств, определения Э. в биол. жидкостях применяют радиоиммунологич. и иммуноферментный методы, основанные на р-ции антиген-антитело, где в качестве антигена используют конъюгированный с Э. белок. [c.490]

    Концепция агглютинации известна с 1920-х гг. в микробиологическом анализе. Этот принцип можно положить в основу офазования комплекса между антителом и антигеном, где имеется поливалентное связывание. Поливалентный белок будет реагировать со своим антителом, образуя осаждающийся комплекс, но реакция в высокой степени зависит от таких факторов, как нонная сила и ионные частицы, и осложняется изменением реакционной способности различных антигенных связывающих центров на антителе В принципе, по мере протекания реакции образование комплекса может приводить к изменению способности среды рассеивать свет, но в адеале комплекс должен оставаться во взвешенном состоянии. [c.584]

    В этих методах используют главным образом фракцию иммунных сывороток или даже антитела, выделенные из этой фракции посредством иммуноаффииной хроматографии, применяя иммобилизированный чистый антиген. Для мечения антител используют также белок А, который связывается специфическим образом с фрагментом F большинства IgG в этом случае сам белок А маркируют коллоидным золотом такая техника практикуется в электронной микроскопии [95]. [c.106]

    Было разработано несколько аффинных меток. Среди них - глутатионтрансфераза, белок, связывающий мальтозу, и короткие аминокислотные последовательности - антигенные детерминанты, которые связываются соответственно с глутатионом, мальтозой и специфическими антителами. Использовали и разные сайты расщепления, специфичные для тромбина, энтерокиназы и других протеиназ. Аффинная метка и сайт расщепления могут находиться как на N-, так и на С-конце рекомбинантного белка и использоваться в прокариотических системах экспрессии, а также в системах экспрессии на основе клеток насекомых, млекопитающих или грибов. [c.149]

    Принцип, положенный в основу методов RIA [91, 117], аналогичен принципу методов ELISA эти методы в основном различаются тем, что для мечения вместо ферментов применяются радиоактивные элементы (главным образом йод) [49]. Широко используемый вариант этого метода не предусматривает иммобилизацию одного из реагентов реакция проходит в растворимой фазе, поэтому очень важным дополнительным этапом является отделение меченых реагентов, участвующих в иммунокомплексах, от тех, которые не участвуют. Если антиген представляет собой белок, обычно проводят разделение иммунокомплекса, осаждая его антителами к иммуноглобулинам кролика (если специфические антитела к белку индуцированы у кролика) [49]. [c.108]

    Тройные спирали коллагена большинства позвоночных состоят из двух а -цепей и гомологичной аа-цепи. Пока известна аминокислотная последовательность только ai-цепи, которая включает 1052 остатка [195—1971. За исключением 16 N-концевых и 25 С-концевых остатков, состав (Gly-X-V)m в ней строго соблюдается. Пользуясь этой формулой, можно легко выявить в различных аминокислотных последовательностях коллагеноподобные структуры. В глобулярных белках такие структуры пока еще не были обнаружены. Однако весьма вероятно, что они присутствуют в компоненте lq системы комплемента человека [1981, которая узнает антитела, соединенные с антигенами. Как установлено по электронным микрофотограммам, это белок содержит пучок из 18 параллельных цепей, организованных в шесть коллагеноподобных волокон, которые входят в шесть глобул. Возможно, что в дальнейшем будут выявлены и другие смешанные белки, содержащие коллагеноподобные структуры. [c.91]

    Последний из рассматриваемых примеров белок-белковых взаимодействий касается антител или иммуноглобулинов (IgG). Эти белки производятся В-лимфоцитами в тех случаях, когда чужая макромолекула типа белка или углевода попадает в организм. Чужая макромолекула, называемая антигеном, может проникать туда в составе поражающих бактерий или вирусов через кожу (случайно, в результате ранения или намеренно при иммунизации) или через кишечник при пищевой аллергии. Если ковалентно присоединить к белку малую молекулу (гаптен) и затем ввести его в организм, обычно вырабатываются антитела к гаптену. Такое быстрое продуцирование антител подопытными животными является основой различных иммунологических методов, в частности ра-диоиммунодиагностических. [c.564]

    Значительная информация об аминокислотных остатках, ответственных за связывание антигена, была получена методом афинной модификации [19]. Этот метод опирается на те же принципы, что и в случае фёрментов (см. разд. 23.3.10). Соединение, близкое по структуре антигену и несущее реакционноспособиую функциональную группу, может в принципе образовывать ковалентную связь с боковым радикалом аминокислоты, принадлежащей центру связывания. До сих пор этот метод не применялся в случае, если антиген представляет собой полисахарид или белок. При этом необходимо знание связывающейся на антителе части антигена, а также специфическое введение в этот участок реакционноспособной группировки. Вследствие этих затруднений современные исследования сконцентрировались на идентификации [c.565]

    Основной принцип ELISA — специфическое связывание первого антитела с мишенью. Если молекула-мишень представляет собой белок, то его очищенный препарат обычно используют для получения антител, при помощи которых затем и выявляют данную мишень. Антитела, которые образуются в сыворотке (антисыворотке) крови иммунизированного животного (обычно кролика), связываются с разными антигенными детерминантами (эпитопами) моле-кулы-мишени. Такую смесь антител называют поликлональным препаратом. Использование поликлональных антител имеет два недостатка, существенных для некоторых методов диагностики 1) содержание отдельных антител в поликлональном препарате может варьировать от одной партии к другой 2) поликлональные антитела нельзя применять, если необходимо различить две сходные мишени, т. е. когда патогенная (мишень) и непатогенная (не-мишень) формы различаются единственной детерминантой. Однако эти проблемы вполне разрешимы, поскольку сейчас научились получать препараты антител, выработанных к одной антигенной детерминанте, т. е. препараты моноклональных антител. [c.184]

    Основной антигенной детерминантой, индуцирующей образование антител, является вирусный капсидный белок 1 (VP1, viral protein 1). Это более слабый антиген, чем интактные вирусные частицы, но все же он индуцирует образование антител и обеспечивает защиту животных от инфекции. Поэтому были предприняты попытки клонировать VPl-ген. [c.231]

    Новый подход, позволяющий индуцировать у организма иммунный ответ без введения антигена, основан на включении в клетки животно-го-мишени гена, кодирующего белок-антиген. В первых экспериментах такого рода Е. соН-плазмиду, содержащую клонированный ген белка-антигена, транскрипция которого находилась под контролем промотора вируса животных, конъюгировали с микрочастицами золота и бомбардировали ими клетки уха мыши. Впоследствии выяснилось, что клонированную кДНК можно вводить в клетки и с помощью внутримышечной инъекции раствора с большим количеством плазмиды, несущей соответствующую ДНК. Для этого необходимо в 10 -10" раз больше ДНК, чем при бомбардировке микрочастицами. В одном из экспериментов более чем в 75% случаев ген включался в клетки мыши, и синтезированный белок-антиген индуцировал синтез антител. Этот подход позволяет избежать очистки антигена, что требует много времени и средств, или использования для соз- [c.233]

    Предположим, что вы принимаете участие в работе международной организации по охране здоровья животных и вам нужно создать вакцину против крайне вирулентного вируса крупного рогатого скота. Известно, что геном представляет собой полиадени-лированную линейную одноцепочечную РНК длиной 10 т. п. н. и содержит восемь разных генов. Вирус не имеет оболочки, его основной антигенной детерминантой является белок капсида (УР 2). Какую стратегию вы используете  [c.246]

    Антитело (Antibody) Белок (иммуноглобулин), синтезируемый В-лимфоцитами в ответ на попадание в организм различных антигенов и специфически с ними взаимодействующий. [c.544]


Смотреть страницы где упоминается термин Антигены белков: [c.217]    [c.150]    [c.197]    [c.201]    [c.217]    [c.327]    [c.579]    [c.415]    [c.565]    [c.354]    [c.93]    [c.63]    [c.217]    [c.327]    [c.545]    [c.117]    [c.137]    [c.220]    [c.242]   
Белки Том 1 (1956) -- [ c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенная структура белков, методы

Антигенность

Антигенные свойства белков после переноса

Антигены

Антигены белков крови

Выявление антигенов клеточной поверхности с помощью розеткообразующих эритроцитов, нагруженных стафилококковым белком А (Дж. Джонсон)



© 2025 chem21.info Реклама на сайте