Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок инактивация

    При рассмотрении температурной зависимости жизненной кривой можно установить три температурные точки температурный минимум, оптимум и максимум. В границах температуры от минимума до оптимума интенсивность жизненного процесса растет, и здесь в основном наблюдается приблизительно такая же зависимость, как и в обычном химическом процессе. Температурный оптимум у животных колеблется в пределах 308...315 К (у растений он даже выше). Дальнейшее повышение температуры приводит к быстрому снижению процесса, и по достижении максимальной температуры наступает гибель, что связано с денатурацией белка и инактивацией ферментов. [c.130]


    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]

    Большинство ферментов являются лабильными белками. При переводе их в экстракт они лишаются своего естественного (в клетке) окружения и легко подвергаются денатурации и инактивации под влиянием различных факторов. В связи с этим при выделении и очистке ферментов необходимо соблюдать целый ряд предосторожностей. Как правило, все операции следует проводить при 2—4° С (лучше — в холодной комнате), а фракционирование органическими растворителями — при температуре ниже О С. [c.196]

    В литературе пока практически отсутствуют примеры удачной реактивации белков, инактивация которых явилась следствием таких химических процессов, как гидролиз пептидных связей, фосфорилирование, дезамидирование остатков аспарагина. [c.136]

    Комплементарный белок, возникающий в крови для инактивации специфического постороннего белка - антигена [c.543]


    Основными причинами гибели организмов под влиянием высоких температур является распад белков протоплазмы, а также образование токсичных промежуточных и конечных продуктов этого распада. При распаде белков нарушается суб-микроскопическая структура протопласта и соответственно координация происходящих в различных частях протопласта физико-биологических процессов, которые регулируются целой системой, сопряженно действующих ферментов. Помимо распада белков при повышенных температурах происходит и инактивация ферментов, которая также гибельна для организмов. [c.157]

    Ферменты значительно более чувствительны к внешним условиям и их изменению, чем неорганические катализаторы. Они проявляют свою активность в строго определенном интервале значений pH среды изменение pH сразу же вызывает уменьшение активности фермента. Очень чувствительны ферменты и к изменению температуры. Для каждого вида ферментов суш,ествует определенная оптимальная температура, при которой он проявляет максимальную активность. Обычно она лежит в пределах 40— 60 С. Повышение температуры выше 70—80°С может привести к полной инактивации фермента вследствие денатурации белка. Неорганические катализаторы активны при температурах в несколько сот градусов Цельсия. [c.112]

    В этом, да и во всех остальных случаях неспецифической элюции, экспериментатор пе должен упускать из по.чя зрения возможности необратимой денатурации очищаемого белка или белкового лиганда. Нередко приходится искать компромисс между эффективностью элюции и опасностью такой денатурации. По этой причине элюированный с колонки препарат следует немедленно путем диализа или гель-фильтрации перевести в подходящий буфер, а сорбент — промыть. Выяснение эффективности того или иного метода неспецифической элюции можно провести, как обычно, с помощью предварительных опытов в пробирках. Опасность необратимой денатурации следует оцепить, наблюдая динамику инактивации раствора вещества в элюенте. Эта оценка должна предшествовать выяснению эффективности элюции, если наличие вещества в элюенте выявляется по его биологической активности. [c.408]

    Температура денатурации разных белков неодинакова. Используя даже сравнительно мягкие условия нагревания, можно добиться коагуляции значительной части балластных белков без существенной инактивации выделяемого фермента. [c.199]

    Термин инактивация, а не денатурация следует использовать при описа-нпи утраты функции в том случае, когда отсутствуют измерения, показывающие, что произошла денатурация белка. Инактивация может быть обусловлена заменой функциональной группы, диссоциацией, небольшим конформа-ционным изменением пли денатурацией. Тенфорд (Tanford, 1968) определил денатурацию как глубокую перестройку первоначальной нативной структуры белка без изменения его аминокислотной последовательностич . [c.260]

    Репрессия генной активности наблюдается в результате прямо-IX) ферментативного метилирования генов. Метилированные гены, введенные в культуры клеток, сохраняют неактивное метилированное состояние в ряду поколений после многих актов репликации-Не ясно, является ли метилирование in vivo причиной инактивации i HOB нли лишь закрепляет неактивное состояние, уже достигну- > е, например, в результате предшествующего взаимодействия с белками. [c.219]

    Процессы метилирования несомненно участвуют в инактивации одной из двух Х-хромосом в клетках млекопитающих. Неактивное состояние одной из двух Х-хромосом, возникающее в раннем развитии эмбриона, цитологически обнаруживается по наличию компактного гетерохроматического тельца Барра. Это неактивное состояние наследуется в клеточных поколениях, а реактивация Х-хромосомы происходит при образовании герминальных клеток. Путем деметилирования с помощью 5-азацитидина также удавалось активировать гены неактивной Х-хромосомы. По-видимому, инициация инактивации Х-хромосомы обеспечивается взаимодействием со специфическими белками, а метилирование — это вторичный процесс, закрепляющий неактивное состояние Х-хромосомы в последующих клеточных делениях. [c.220]

    Репрессированное состояние профага может поддерживаться неопредыенно долго при размножении лизогенных клеток. Однако при некоторых условиях (например, при активации клеточной SOS-системы см. с. 79) репрессор разрушается (или инактивируется) и тогда происходит индукция профага. В результате инактивации репрессора I возобновляется транскрипция с промоторов Р и Рь и синтезируются мРНК для белков Сго и N. Белок N оказывает уже известное на.м антитерминирующее действие, а белок Сго обеспечивает переключение транскрипции на новые рельсы — на путь продуктивной инфекции. Белок Сго, подобно белку С1,—репрессор, взаимодействующий с правой (Or) и левой (0J операторными Зонами ДНК фага X, Но сродство белка Сго к разным операторным участкам иное, чем у белка I. В частности, в правой операторной зоне белок Сго имеет наибольшее сродство к участку Gr (рис. 155). [c.295]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]


    Мышечный гомогенат центрифугируют 10 мин в центрифуге с охлаждением при 12 000 g. Для инактивации глюкозофосфатизомера-зы проводят тепловую обработку. Мутный экстракт из центрифужных пробирок сливают в стеклянный стакан, доводят его pH до 5,0, добавляя по каплям 1 н. СНзСООН при постоянном перемешивании стеклянной палочкой. Проводят тепловую обработку стакан с экстрактом помещают в водяную баню, нагретую до 85—90°С, и нагревают экстракт, поддерживая указанную температуру в бане, до тех пор, пока его температура достигнет 65° (экстракт постоянно перемешивают). По окончании тепловой обработки стакан с экстрактом помещают в ледяную баню и охлаждают его до 4°С. Осадок денатурированных белков отделяют центрифугированием или фильтрованием. Центрифугат (фильтрат) хранят в рефрижераторе и используют его как источник фосфоглюкомутазы. Так как ферментативная активность сохраняется в течение нескольких недель, экстракт можно использовать при проведении повторных экспериментов. [c.60]

    Подобно крахмальному и акриламидному агаровый гель является очень мягким носителем в отличие от электрофореза на бумаге при нем не происходит инактивации белков, что позволяет определять активность отдельных фракций бeлкОДJieпo peд твeннo в геле после проведения электрофореза. Приготовление агарового геля значительно проще, чем крахмального или полиакриламидного, продолжительность электрофореза составляет I—4 ч. [c.92]

    Суспензию сефарозы с иммобилизованной дегидрогеназой промывают 10-кратным объемом раствора мочевины, смешивают с 4-кратным объемом раствора мочевины той же концентрации и инкубируют суспензию при перемешивании. За ходом инактивации следят, измеряя активность фермента на носителе. Через каждые 10 мин из инкуба-ционной смеси отбирают аликвоты препарата дегидрогеназы и без отмывания геля от мочевины вносят их в стандартную систему для определения активности. Реакцию начинают добавлением субстрата через 10 с после внесения суспензии сефарозы. Исследуют влияние концентрации мочевины на процесс инактивации фермента. Оптимальной концентрацией мочевины является такая, которая позволяет провести денатурацию 3 из 4 субъединиц дегидрогеназы и перевести эти субъединицы в раствор. Подбирая концентрацию мочевины, следует получить такую зависимость инактивации фермента от времени, на которой будет выраженное плато на уровне 25% от исходной активности. При определении белка и активности на разных стадиях денатурации можно показать, что в начале плато в связанном с матрицей состояний находится димер дегидрогеназы, сохраняющий 50% от исходной удельной активности. При сохранении в процессе инкубации активности такого димера происходит постепенное отщепление неактивной субъ- [c.302]

    Дифтерийный токсин представляет собой белок с мол. весом 62 ООО. Его минимальная летальная доза для морской свинки составляет всего лишь 0,16 мг/кг. Исследования, проведенные на культуре клеток, показали, что токсин блокирует включение аминокислот в белки в результате инактивации-фактора элонгации EF-2, необходимого для транслокацин в рибосомах млекопитающих. Токсин действует аналогично ферменту, переносящему ADP-рибозильную группу от NAD" " к фактору EF-2  [c.305]

    В геномах низших эукариот обнаружены М.г.э. разных типов, среди к-рых лучше всего изучена т. наз. последовательность Ту1 дрожжей. Этот элемент представлен в геноме 4-35 кого1ями, локализация к-рых отличается у разных штаммов. Ту1 содержит 5,6 тыс. пар нуклеотидов и ограничен прямыми повторами, содержащими ок. 300 пар нуклеотидов (т. наз. 8-последовательностн). Копии Ту1 не полностью идентичны друг другу и составляют таким образом гетерог. семейство. В том случае, если две копии Ту1 заключают между собой клеточшле гены, они перемещают нх по геному, т.е. образуют истинные транспозоны. Включение Ту1-подобных элементов в регуляторные зоны генов может вызывать не только инактивацию локусов, но и изменения механизма их регуляции, что, по-видимому, связано с присутствием в нуклеотидной последовательности Ту1 специфич. участков узнавания регуляторных белков. [c.80]

    АТФ-аденозинтрифосфат, АДФ - аденозиндифосфат, Р-фосфорная к-та нли ее остаток Фосфорилирование сопровождается активацией или инактивацией ферментов, напр, гликозилтрансфераз, а также изменением физ.-хим. св-в неферментных белков. Обратимое фосфорилирование белков контролирует, напр., такие важные процессы, как транскрипция и трансляция, метаболизм липидов, глюконеогенез, мышечное сокращение. [c.103]

    Содержится П. в желудочном соке млекопитающих, птиц, рептилий и рыб. Образуется гл. обр. в клетках желез слизистой желудка в виде неактивного предшественника-пепсиногеиа, к-рый после отщепления пептида, состоящего из 44 аминокислотных остатков, превращ. в активный (Армент. П. наиб, устойчив при pH 5, при pH выше 6 происходит его быстрая и необратимая инактивация. Оптим. каталитич. активность при гидролизе белков-при pH ок. 2, низкомол. субстратов-при pH 3,5 р1 2,08 (для дефосфо-рилир. белка). [c.465]

    Аминокислотная последовательность Р.б. кодируется т.наз. регуляторными генами. Мутационная инактивация репрессора приводит к неконтролируемому синтезу мРНК, и, следовательно, определенного белка (в результате трансляции-синтеза белка на мРНК-матрице). Такие организмы наз. конститутивными мутантами. Утрата в результате мутации активатора приводит к стойкому сниженшо синтеза регулируемого белка. [c.218]

    Дезодоранты и озоновый щит планеты. Каждый знает, что дезодоранты — это средства, устраняющие неприятный запах пота. На чем основано их действие Пот выделяется особыми железами, расположенными в коже на глубине 1—3 мм. У здоровых людей на 98—99 % он состоит из воды. С потом из организма выводятся продукты метаболизма мочевина, мочевая кислота, аммиак, некоторые аминокислоты, жирные кислоты, холестерин, в следовых количествах белки, стероидные гормоны и др. Из минеральных компонентов в состав пота входят ионы натрия, кальция, магния, меди, марганца, железа, а также хлоридные и иодидные анионы. Неприятный запах пота связан с бактериальным расщеплением его составляющих или с окислением их кислородом воздуха. Дезодоранты (косметические средства от пота) бывают двух типов. Одни тормозят разложение выводимых с потом продуктов метаболизма путем инактивации микроорганизмов или предотвращением окисления продуктов потовыделения. Действие второй группы дезодорантов основано на частичном подавлении процессов потовыделения. Такие средства называют антиперспира-нами. Этими свойствами обладают соли алюминия, цинка, циркония, свинца, хрома, железа, висмута, а также формальдегид, таннины, этиловый спирт. На практике из солей в качестве антиперспиранов чаще всего используют соединения алюминия. Перечисленные вещества взаимодействуют с компонентами пота, образуя нерастворимые соединения, которые закрывают каналы потовых желез и тем самым уменьшают потовыделение. В оба типа дезодорантов вводят отдушки. [c.107]

    Даже до того, как стала известна структура кристаллической лактатдегидрогеназы, отсутствие рН-зависимости связывания кофермента в интервале pH от 5 до 10 наряду с наблюдавшейся инактивацией фермента бутандионом позволило предположить, что пирофосфатная группа NAD+ связывается с гуанидиниевой группой бокового радикала аргинина [75]. Рентгеноструктурные исследования показывают, что эту функцию осуществляет Arg-101 (рис. 8-12). Несколько неожиданным оказалось то, что аминогруппа аденина не образует водородной связи с белком. Аденин скорее всего заключен в гидрофобной щели, а его аминогруппа контактирует с растворителем. [c.245]

    Специфический протеолиз — удобный процесс для образования сложных белковых структур. Во многих случаях белки модифицируются путем расщепления одной или нескольких пептидных связей. Для обозначения этого типа катализируемых ферментами реакций, которые играют доминирующую роль во многих физиологических процессах [137—139], используются термины ограниченный протеолиз или специфический протеолиз (табл. 4.2). Хорошо известными примерами специфического расщепления полипептидов являются активация предшественников пищеварительных ферментов, морфогенетические процессы в бактериальных вирусах и каскадные процессы коагуляции и комплементного действия крови [138, 140]. Недавно было показано, что механизмы посттрансля-ционного расщепления имеют место также при образовании таких разных белков, как инсулин, коллаген и специфичные белки вирусов. Кроме того, высокоспецифичное протеолитическое расщепление ферментов важно при инактивации и активации специфических внутриклеточных ферментов (табл. 4.2). [c.72]

    Инактивация и распад белка часто инициируются одной специфической протеолити-ческой стадией [c.74]

    Натуральные (несгущенные) соки. Получение этих препаратов не отличается сложностью. Мытый и обсушенный на воздухе свежесобранный растительный материал измельчают на вальцах и траворезках. Полученную кашицу подвергают прессованию под высоким давлением. Если материал беден соком, то до прессования его мацерируют спиртом. Полученный после прессования сок богат белками и ферментами, а потому неустойчив, Для стабилизации его обрабатывают крепким спиртом, осаждающим белковые, пектиновые и слизистые вещества, или с целью инактивации последних подвергают быстрому нагреванию до 75—78°С с последующим быстрым охлаждением. После подобных обработок сок отстаивают и фильтруют или центрифугируют. Осветленный сок обычно консервируют спиртом и хлорэтоном и подвергают стандартизации, [c.394]

    Существует несколько методов, с помощью которых можно обнаружить аминокислотные остатки, ответственные за биологическую активность белков. В первом методе белок необходимо подвергнуть частичной деградации, в особенности вблизи Л/- и С-кон-цов соответственно с помощью аминопептидаз и карбоксипептидаз. Например, удаление (с помощью карбоксипептидазы) трех остатков с С-конца рибонуклеазы не влияет на ее активность. Более глубокая деградация в этой части молекулы, однако, приводит к инактивации. По второму методу необходимо подвергнуть химической модификации боковые группы аминокислотных остатков белка. Естественно, что результаты такого рода экспериментов проще интерпретировать в том случае, когда эта модификация специфична. Например, легко идентифицировать область связывания кофермента пиридоксальфосфата в аминотрансферазе. Альд-имин, образующийся в результате конденсации кофермента с е-аминогруппой остатка лизина, восстанавливают борогидридом натрия и идентифицируют, так как он не затрагивается при гидролитическом распаде. Аналогично, ферменты, содержащие тиольные группы, такие как алкогольдегидрогеназа, 3-фосфоглицераль-дегиддегидрогеназа и папаин, обычно ингибируют реакцией с п-хлормеркурибензойной или иодуксусной кислотой. Специфичность модификации белков можно усилить, если структура реаген- [c.282]

    Ферменты являются белками, поэтому любые агенты, вызывающие денатурацию белка (кислоты, щелочи, соли тяжелых металлов, нагревание), приводят к необратимой инактивации фермента. Однако подобное инак-тивирование относительно неспецифично, оно не связано с механизмом действия ферментов. Гораздо большую группу составляют так называемые специфические ингибиторы, которые оказывают свое действие на какой-либо один фермент или группу родственных ферментов, вызывая обратимое или необратимое ингибирование. Исследование этих ингибиторов имеет важное значение. Во-первых, ингибиторы могут дать ценную информацию о химической природе активного центра фермента, а также о составе его функциональных групп и природе химических связей, обеспечивающих образование фермент-субстратного комплекса. Известны вещества, включая лекарственные препараты, специфически связывающие ту или иную функциональную группу в молекуле фермента, выключая ее из химической реакции. Так, йодацетат I H,—СООН, его амид и этиловый эфир, пара-хлормеркурибензоат lHg—С Н,—СООН и другие реагенты сравнительно легко вступают в химическую связь с некоторыми SH-группами ферментов. Если такие группы имеют существенное значение для акта катализа, то добавление подобных ингибиторов приводит к полной потере активности фермента  [c.147]

    Интересно, что дифтерийный и холерный токсины наделены энзиматической активностью, вызывая АДФ-рибозилирование (соответственно инактивацию) ключевых клеточных ферментов или белков. Дифтерийный токсин выключает синтез белкового фактора 2 стадии элонгации синтеза белка, а холерный-специфического О-белка и как следствие вызывает массивную потерю воды. [c.154]

    Известно, что многие ферменты содержат в активном центре 8Н-груп-пы, абсолютно необходимые для каталитической реакции. При их окислении ферменты теряют свою активность. Предполагают, что одной из главных функций глутатиона является сохранение этих ферментов в активной восстановленной форме. Окисленный глутатион может восстанавливаться под действием глутатионредуктазы, используя НАДФН. Кроме того, глутатион может оказывать ингибирующее действие на некоторые белки. В частности, известная реакция инактивации инсулина под действием глутатионинсулинтрансгидрогеназы, в которой 8Н-глутатион является донором водородных атомов, разрывающих дисульфидные связи между двумя полипептидными цепями молекулы инсулина. Установлена также коферментная функция глутатиона, в частности для глиоксилазы I. Ранее обсуждалось участие глутатиона в транспорте аминокислот через клеточную мембрану. [c.453]


Смотреть страницы где упоминается термин Белок инактивация: [c.155]    [c.386]    [c.142]    [c.484]    [c.590]    [c.123]    [c.144]    [c.119]    [c.122]    [c.46]    [c.335]    [c.245]    [c.258]    [c.77]    [c.141]    [c.181]   
Принципы структурной организации белков (1982) -- [ c.77 , c.184 ]




ПОИСК







© 2025 chem21.info Реклама на сайте