Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цистеин кодон

    Как показал анализ нуклеотидной последовательности гена ИФр, в нем присутствуют три остатка цистеина, и один из них или несколько, возможно, участвуют в образовании дисульфидных связей, приводящих к образованию димеров и олигомеров в клетках Е. соИ, но не в клетках человека. Было высказано предположение, что замена одного или нескольких цистеиновых кодонов на сериновые приведет к синтезу интерферона, не образующего олигомеров. Серин бьш выбран потому, что его структура сходна со структурой цистеина за исключением того, что вместо серы он содержит кислород и поэтому не может образовывать дисульфидные связи. [c.170]


    Самым интересным явлением, которое сразу осветило ряд очень трудных вопросов биологии, биохимии и генетики, оказалось соответствие между природой аминокислоты, включаемой в белковую цепь в процессе синтеза, и чередованием нуклеотидов в РНК. Каждой аминокислоте соответствует определенная тройка нуклеотидов, так называемый кодон, причем имеет значение не только состав, но и порядок следования нуклеотидов. Приведенные тройки отвечают УГУ — цистеину, ААА — лизину, УУГ — лейцину, ГУУ — валину и ЦЦЦ — пролину. [c.189]

    Сравнение частот включения этих двух аминокислот относительно фенилаланина с ожидаемыми частотами встречаемости триплетов У А, УАг и Аз относительно фенилаланинового кодона Уд в случайной последовательности УА показывает, что кодоны тирозина и изолейцина, вероятнее всего, отвечают эмпирической формуле УаА. В-третьих, аналогичный анализ результатов по включению аминокислот под влиянием поли-] Ц и поли-УГ позволил Ниренбергу заключить, что кодонами серина и пролина соответственно являются УаЦ и УЦ, (хотя в опытах с поли-Ц было показано, что пролин кодируется также Цд)" кодонами валина и цистеина — У2Г и что триптофан и глицин кодируются кодонами УГз. Особый интерес представляют данные] по включению лейцина, так как включение лейцина стимулируется как поли-УЦ, так и поли-УГ. Это означает, что лейцин кодируется по крайней мере двумя различными кодонами — УаЦ и У Г. [c.437]

    Код содержит много синонимов, т. е. почти каждая аминокислота представлена более чем одним кодоном. Три аминокислоты — аргинин, серин и лейцин — имеют по шесть кодонов пять — валин, пролин, треонин, аланин и глицин — по четыре кодона одна — изолейцин — имеет три кодона девять — фенилаланин, тирозин, гистидин, глутамин, аспарагин, лизин, аспарагиновая кислота, глутаминовая кислота и цистеин — имеют по два кодона. Только две аминокислоты, метионин и триптофан, представлены единичными кодонами. [c.441]

    Аминокислоты - это основной составляющий элемент полимерной аминокислотной цепочки, называемой белком. Основания - буквы - нуклеиновых кислот читаются по три сразу как набор триплетных кодонов, причем каждая аминокислота кодируется одним или несколькими триплетами (см. Генетический код в этой таблице и приложении). Белки всех живых систем состоят из 20 обычных аминокислот Gly (глицин). Ala (аланин), Val (валин), Leu (лейцин). Не (изолейцин), Pro (пролин), Phe (фенилаланин), Туг (тирозин), Тгр (триптофан), Ser (серин), Thr (треонин), ys (цистеин), Met (метио- [c.32]


    Б. Нормальные кодоны для цистеина-это UGU и UG . Таким образом, ошибка при взаимодействии кодон-антикодон относится к первому положению кодона (третьему положению антикодона). Результаты этого и других экспериментов позволяют предполагать, что рибосомы могут ошибочно считывать и вместо С и С вместо и в первых двух положениях кодонов, а С и U-вместо А в первом положении. [c.286]

    Уже из соотношения 64 кодона на 20 аминокислот следует, что код должен быть вырожденным, т. е. одной аминокислоте должно соответствовать несколько кодонов. Как видно из табл. 5.2, распределение аминокислот по кодонам весьма неравномерно. Трем аминокислотам — лейцину, серину и аргинину — соответствует по шесть кодонов, пяти аминокислотам — глицину, аланину, валину, пролину и треонину — по четыре, изолейцину — три кодона, лизину, аспартату, аспарагину, глутамату, глутамину, фенилаланину, тирозину, гистидину и цистеину — по два, а метионину и триптофану — по одному кодону. Три кодона — ПАА, НАС и иСА [c.172]

    Отбор аминокислоты, соответствующей кодону, осуществляется в результате взаимодействия кодона мРНК с антикодоном тРНК — тринуклеотидным фрагментом, расположенным в антикодоновой петле тРНК (см. 3.4 и рис. 28 и 29). Сам аминоацильный остаток в этом отборе не участвует. Уже в первые годы после открытия транспортных РНК было показано, что превращение остатка цистеина, [c.188]

    Информация, заложенная в ДНК и РНК, реализуется в процессе синтеза белка. Механизмы передачи информации от ДНК на РНК понятны и очевидны, так как цепь нуклеотидов характерна для обеих структур, а матричный синтез предусматривает полную идентичность их последовательностей. Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминоьсислот Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (4 = 16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых триплетами или кодонами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 4 дает основание полагать, что 20 аминокислот кодируются 64 кодонами. Экспериментально установлено, что таких кодонов меньше, всего 61. Оставшиеся три кодона не несут в себе информации, однако два из них используются в качестве сигналов терминации. Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только с аденином, но и с гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и ту же аминокислоту. И действительно, было установлено, что ряд аминокислот кодируется двумя и более антикодонами (табл. 29.1). Из таблицы видно, что только две аминокислоты — метионин и триптофан — кодируются при помощи одного кодона. Число кодонов для остальных аминокислот варьирует от двух (для аргинина, цистеина и др.) до шести (для лейцина и серина). Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью [c.462]

    Когда такой полинуклеотид был использован в качестве матрицы в бесклеточной системе синтеза белка, наблюдалось образование чередующегося полипептида-валин-цистеин-валин-цистеин-, очевидно определяемого последовательностью кодонов-УГУ-ГУГ-УГУ-ГУГ-. Этот результат позволил заключить, что лейциновый кодон с формулой УгГ в действительности не УГУ и что кодоны триптофана и глицина с формулами УГа— не ГУГ. Стало также ясно, что либо валиновый кодон с формулой УаГ — это УГУ и тогда ГУГ является вторым кодоном для цистеина, либо цисте-иновый кодон с формулой УаГ — это УГУ и тогда ГУГ является вторым кодоном для валина. Помимо этого, образование чередующегося полипептида на чередующейся полинуклеотидной матрице окончательно доказало, что кодон содержит нечетное число нуклеотидов, т. е. состоит из трех, а не из шести нуклеотидов слабые сомнения в этом еще оставались после работ Крика и Бреннера, доказывающих триплетность кода. [c.439]

    Антикодон у цистеинил-тРНК спаривается с кодоном иси. После хими- [c.69]

    Критическое значение для безошибочного синтеза белка имеет также правильное кодон-антикодоновое взаимодействие. Для различных кодон-антикодоновых взаимодействий значения констант связывания могут различаться, поскольку пары образуются между различными основаниями. Поэтому частота неправильного спаривания индивидуальна для каждой кодон-антикодоновой пары. Например, замена аргинина на цистеин в бактериальном белке флагеллине происходит с частотой приблизительно 1 на 10 триплетов, кодирующих аргинин. (Все неправильные включения в рассматриваемом примере происходят, по всей видимости, из-за ошибок при распознавании кодона, так как неверное ацилирование тРНК в данном случае маловероятно.) [c.114]


    Узнавание кодона молекулой тРНК не зависит от того, какая аминокислота присоединена к ее З -концу. Это было продемонстрировано в эксперименте, в котором радиоактивный цистеин, присоединенный к специфической молекуле тРНК (tPHK J, химическим путем превращали в аланин. При этом антико- [c.97]

    После облучения кроликов в дозе 8,5 Гр, по данным Б. Ф. Сухомлинова, состав аминокислот гемоглобина изменился, уменьшилось количество цистеина (УГУ, УГЦ) и фенилаланина (УУУ, УУЦ) при увеличении аспарагиновой кислоты (ААУ, ААЦ) и гистидина (ЦАУ, ЦАЦ) — при отсутствии заметных изменений в содержании других аминокислот. В этом случае каждая пара кодонов у всех четырех аминокислот имеет одинаковые третьи нуклеотиды и, следовательно, у них имеется также определеппая близость кодовой специфичности. Замена этих аминокислот могла произойти по принципу ложного кодирования. [c.95]

    У собак на 15-е сутки после облучения в дозе 3,8 Гр минорный гемоглобин НЬА) увеличивался с 7,5 до 26%, а основной гемоглобип НЬА упал с 86,5 до 65—68%. У минорного гемоглобина по сравнению с основным меньше содержание серипа (кодоны УЦА, УЦГ, АГУ, АГЦ) и лейцина (УУА, УУГ) и увеличено содеря апие цистеина (УГУ, УГЦ), глутамина (ГАА), валина (ГУУ, [c.95]

    С этой целью мы провели анализ частоты замен аминокислот в зависимости от их основных особенностей (полярности, характера заряда, числа кодонов, массового числа и др.). Эти данные относятся к уже указанным выше материалам но ЛДГ цыплят и свиией. Частота замен для разных аминокислот была неодинаковой (от О до 54—67%) и не зависела от абсолютного количества данной аминокислоты в молекуле фермента. Не зависела она и от полярности илп от характера заряда, от массы молекулы или числа кодонов. Частота замен не зависела и от того, какилш группами обусловлены полярность и заряд аминокислоты. Например, цистеин, имеющий ЗН-группу, заменялся у цыплят в 28% случаев, а у свиней совсем не заменялся. Указанные замены не зависели от места расположений аминокислотного остатка во вторичной структуре молеку- [c.105]

    Б. Во флагеллине цистеин ошибочно включается по аргининовым кодонам GU и G . Объясните на основе взаимодействия кодон-антикодон, какая ошибка совершается при неправильном включении цистеина вместо аргинина  [c.14]

    Превращение цистеинил-тРНК°" в ала-нил-тРНК приводит к синтезу полипептида, в котором аланин занимает позиции, отвечающие цистеиновому кодону иси. Эти остатки аланина обозначены черными кружками, помещенными в треугольники. [c.133]

    Удивительной особенностью кода оказалось то, что все аминокислоты, кроме двух, кодируются более чем одним кодоном. Эти две составляющие исключение аминокислоты, метионин и триптофан, встречаются в белках достаточно редко. Наибольшее число кодонов имеют серии и лейцин, которыми белки изобилуют. Такие достаточно часто встречающиеся аминокислоты, как цистеин, аланин, глицин, валин, а также дикарбоновые кислоты и их амиды, кодируются двумя-четырьмя кодонами каждая. Из-за такой избыточности разные нуклеотидные последовательности могут при трансляции давать одну и ту же аминокислотную последовательность (рис. 3.28). Итак, если мы знаем нуклео-тицную последовательность, то можем однозначно определить последовательность белка, обратное же проделать невозможно. [c.136]


Смотреть страницы где упоминается термин Цистеин кодон: [c.484]    [c.154]    [c.172]    [c.173]    [c.188]    [c.106]    [c.174]    [c.282]    [c.439]    [c.459]    [c.68]    [c.69]    [c.98]    [c.98]    [c.194]    [c.194]    [c.288]    [c.285]    [c.132]    [c.71]    [c.72]    [c.93]    [c.94]    [c.94]   
Биохимия Том 3 (1980) -- [ c.111 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Цистеин



© 2025 chem21.info Реклама на сайте