Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты, включение

    Помимо метаболических путей синтеза и распада аминокислот, нуклеотидов и других азотистых веществ у многих организмов имеется специализированный метаболизм включения избыточного азота в сравнительно малотоксичные продукты экскреции. Все эти стороны метаболизма азота будут рассматриваться в этой главе, но из-за исключительной сложности предмета изложение будет сжатым. Сначала мы рассмотрим реакции, с помощью которых из неорганических соединений образуются органические азотистые соединения, а затем обратимся к реакциям, затрагивающим азотный фонд. Далее мы рассмотрим специфические реакции синтеза и катаболизма индивидуальных азотистых соединений. [c.81]


    Таким образом, растение, строя свое тело, на определенной ступени развития откладывает в запас различные продукты, одни из них находятся в клетках клубня в виде водного раствора — аминокислоты, белки, сахара, минеральные вещества, другие — в виде нерастворимых включений — гранулы (зерна) крахмала, эмульсия жира. [c.12]

    Конечно, расчеты электронной плотности неразрывно связаны с оценкой структурных параметров биологических субстратов. Например, как уже отмечалось, белки способны выполнять свои биологические функции только тогда, когда цепь аминокислот, включенных в молекулу белка, свернута в компактную трехмерную структуру. Многие годы химики пытаются установить причины, по которым молекулы белков складываются тем или иным образом, однако полного понимания этих причин еще не достигли. Это объясняется тем, что экспериментальные методы (рентгеноструктурный [c.531]

    Таким путем было установлено, что эффективность пяти супрессоров варьирует в пределах от 5 до 60%. Наконец, благодаря определению первичной структуры полипептидных цепей, достраивающихся до конца в результате супрессии, было выяснено, какая аминокислота внедряется под действием каждого супрессора в участок белка, соответствующий бессмысленному кодону. Как показано в табл. 29, каждый супрессорный ген обеспечивает включение одной определенной аминокислоты. Следовательно, супрессорный ген не только определяет способность клетки транслировать бессмысленный кодон, но также придает ему строго определенный кодовый смысл. Таким образом, мутантная полипептидная цепь, непрерывный синтез которой стал возможным благодаря активности супрессора, будет физиологически активна только в том случае, если аминокислота, включенная этим супрессором в белок под влиянием бессмысленного кодона, окажется приемлемой для функционирования белка. [c.457]

    Как было упомянуто выше, у микроорганизмов существует постоянно действующая система деградации аномальных белков. Такие белки появляются в клетке в результате мутаций, ошибок биосинтеза (преждевременная терминация, замены аминокислот, включение аналогов) или посттрансляционных повреждений (ограниченный протеолиз). Следовательно, аномальные белки отличаются от нормальных клеточных белков размером и аминокислотным составом. Предполагают, что возникающие при этом изменения в третичной структуре и появление гидрофобных участков на поверхности белковых молекул повышают их чувствительность к действию специфических протеиназ. [c.52]


    Преждевременная терминация белкового синтеза, вызываемая нонсенс-мутацией, может быть супрессирована благодаря тому, что в тРНК возникают изменения, позволяющие ей узнать терминирующий кодон как смысловой. В нормальной клетке терминирующий кодон узнается только фактором терминации. Следовательно, мутация в гене тРНК, приводящая к узнаванию терминирующего кодона, придает новое свойство трансляционной системе. Как показано на рис. 7.11, благодаря этому восстанавливается способность включать аминокислоту в ответ на мутантный кодон. В результате синтезируется белок нужной длины. Если аминокислота, включенная в результате супрессии, отличается от аминокислоты, которая исходно присутствовала в белке дикого типа, то его активность может быть частично снижена. [c.98]

    Декарбоксилирование аминокислот в НгО приводит к включению [c.227]

    Синтез молекул ос-аминокислот требует обязательного включения следующих этапов а) процесса формирования углеродного скелета б) фиксации азота с доведением его до состояния аминогруппы в) введения специфических функциональных групп. [c.78]

    Циклопептиды представляют собой группу природных соединений, как правило, построенных из протеиногенных а-аминокислот по тому же принципу, что и линейные полипептиды, т е. обладающих специфичными амидными (пептидными) связями. Отклонением от белкового подобия можно считать включение в эти цепочки, замкнутые в макроциклы, а-аминокислот О-конфи-гурации и модифицированных L-a-аминокислот. В основном, их источниками являются грибы и различные микроорганизмы. Циклопептиды весьма разнообразны по биологической активности — это антибиотики, токсины и регуляторы транспорта ионов. При [c.89]

    Все синтезируемые в процессе трансляции белки построены из остатков 20 аминокислот (т. наз. кодируемых). Какой именно кодон ответствен за включение той или иной аминокислоты, можно определить по таблице, в к-рой буквы А, Г, У, Ц обозначают основания, входящие в нуклеотиды (соотв. аденин, гуанин, урацил, цитозин) в вертикальном ряду слева-в первый нуклеотид кодона, в горизонтальном ряду сверху-во второй, в вертикальном ряду справа-в третий. Трехбуквенные сочетания, напр, фен, сер, лей,-сокращенные назв. аминокислот. Прочерки в таблице означают, что три кодона-УАА, УАГ и УГА в нормальных условиях не кодируют к.-л. аминокислоты. Такие кодоны наз. бессмысленными , или нонсенс-кодонами. Оии являются сигналами остановки синтеза полипептидной цепи. [c.518]

    Таким образом, в природе осуществляется азотфиксация и последующее включение атомов азота в биомолекулы. После гибели растений и животных содержащие азот химические соединения подвергаются микробиологическому разложению и, как это показано на примере аминокислоты глицина, аммонификации.  [c.63]

    Бесклеточные препараты из растений катализируют зависящее от присутствия аминокислот включение пирофосфата в АТФ. Кроме того, такие препараты в присутствии АТФ образуют гидроксаматы аминокислот. Эти данные позволяют предполагать, что аминокислоты активируются в результате образования аминоациладенила-тов. Исследования с ферментными препаратами, полученными из животных и микроорганизмов, подтверждают это предположение. При инкубировании пирофосфата и синтетических аминоацил-аденилатов с препаратами, полученными из дрожжей и животных, образуется АТФ. [c.483]

    Возможность включения отдельных аминокислот в белки была впервые показана после того, как в биохимических исследованиях стали применять аминокислоты, меченные радиоактивным углеродом, тяжелым азотом или радиоактивной серой. Механизм этого процесса тесно связан с биосинтезом белка заново. Аминокислоты перед включением в белок должны быть активированы. Активация аминокислот осуществляется под действием АТФ с образованием аденилатов аминокислот. Включение аминокислот в белки тесно связано с нуклеиновыми кислотами. [c.299]

    Нежелательной побочной реакцией при соединении всех аминокислот с помощью карбодиимидных реагентов является перегруппировка активного промежуточного соединения в аминоацилмочевину (рис. 15), которая уменьшает количество активированной аминокислоты, пригодной для реакции, и вынуждает применять избыток защищенной аминокислоты и карбодиимида на каждой стадии. Количество реактивов, теряющихся на каждой стадии за счет этой побочной реакции, зависит от структуры активируемой аминокислоты, структуры аминокомпоненты реакции (последней К-концевой аминокислоты, включенной в цепь), растворителя и концентрации реагентов вовремя реакции. Объемистые аминокислотные остатки как в активируемой карбоксильной компоненте, так и в аминокомпоненте замедляют реакцию и тем самым обеспечивают активированному комплексу больше времени для перегруппировки в нежелательную ацилмоче-вину. Скорость перегруппировки сильно зависит от природы растворителя в более полярном растворителе [c.61]

    Было показано (Taylor, Stanners, 1967), что крупные полирибосомы начинают дезагрегировать в течение 10 мин после снижения концентрации валина в среде до 5% от нормальной. Это приводит к снижению скорости синтеза белка, измеряемой с использованием многих меченых аминокислот. Следовательно, хотя при том же расходе меченой аминокислоты включение радиоактивности при использовании недостаточной среды может возрастать, в пересчете на молярную концентрацию оно будет снижаться. [c.173]


    Гистохимическое выявление белков основано главным образом на наличии реакционноспособных групп в аминокислотах. При помощи гистохимических методов можно выявлять аминокислоты, включенные в структуру белка. Простые аминокислоты и низкомолекулярные белки вы-мьгоаются из ткани в процессе фиксации и заливки. Как это будет видно из дальнейшего рассмотрения, в настоящее время существуют гистохимические методы для выявления лишь части аминокислот. Эти методы не обеспечивают информации ни об аминокислотном составе и аминокислотной последовательности, ни о величине и пространственном расположении белковой молекулы. Для идентификации белка эти методы применимы лишь в том случае, когда выявляемые реакционноспособные группы присутствуют в высоких концентрациях и могут служить характерным признаком данного специфического белка. Так, для кератиноподобных структур характерны высокие концентрации дисульфидных групп. Для общего изучения белка можно рекомендовать методы выявления концевых амино- и карбоксильных групп. [c.67]

    Вместе с тем, хотя в желудке большинства высших животных потребленные НК разлагаются до свободных пуриновых и пиримидиновых оснований, НК бактерий желудка жвачных (рубца) усваиваются крысой. У большинства млекопитающих животных разрушение основной массы пуринов и пиримидинов происходит до алан-тоина и мочевины с последующей экскрецией и не дает чистой прибавки азота животному, однако известно, что аденин и гуанин рациона могут быть рециклированы в НК и неосновные аминокислоты, включенные в биосинтез аденина. [c.139]

    Терминология. Участок цепи, на котором находится концевая NHj -rpynna называют N-концевым, а противоположный ему - С-концевым. Цепь без аминокислотных радикалов (-NH- n- O-NH- n- O-NH- n- O-) именуют полипе птидным скелетом, аминокислоту, включенную в белок, - амипокислотпым остатком, а аминокислотные радикалы R - боковыми цепями аминокислот, боковыми цепями белка или просто боковыми цепями. Порядок расположения аминокислот в полипептиде называют амипокислотпой последовательностью. Процедуру установления этой последовательности по-английски называют секвенированием. Секвенирование играет очень важную роль в химии белка. Аминокислотная последовательность составляет первичную структуру белка. Фред Сэнгер в Кембридже первым определил аминокислотную последовательность белка (инсулина) и был удостоен в 1958 г. Нобелевской премии. Для определения аминокислотного состава белка имеются приборы -аминокислотные анализаторы. Работа их автоматизирована и для анализа требуется всего 0,001 мкг белка. [c.38]

    Гены — это структуры, которые обеспечивают сохранение видов из поколения в поколение путем передачи информации от материнской клетки к дочерней. В каждом полимере ДНК содержится несколько основных единиц генетической информации. Единственной структурной переменной в цепи ДНК, ответственной за хранение информации, является последовательность четырех оснований. Наименьшая единица информации в ДНК — кодон — состоит из последовательности трех нуклеотидных остатков. Ксдон контролирует включение данной аминокислоты в определенный белок. [c.483]

    Как и в реакциях предыдущего типа, не принципиально, происходит ли при этом включение всего мономера в полимерную цепь, или от мономера отщепляется низкомолекулярный фрагмент. Например, по тому же типу протекает образование полиаминокислот из N-кapбoк иaнгидpидoв аминокислот [c.419]

    Микросомы (рибосомы) представляют собой включения в виде субыикроскопических зернышек, состоящих пз лииопдов, белков и рибонуклеиновых кислот (РНК), которые обеспечивают синтез белков за счет активированных аминокислот, поступающих из мто-хондриальнон системы. [c.195]

    Установлено, что три нуклеотида выбирают аминокислоту для включения в полипептидную цепь можно сказать, что ген представляет собой последовательность трехбуквенных слов (названных кодонами), составленных при помощи четырехбуквенного алфавита — А, Т, G, С для ДНК и аналогично А, U, G, С для РНК. Таким образом, 146 кодонов, 438 букв (плюс несколько кодонов, служащих сигналами начала и прекращения синтеза) должны составлять ген, кодирующий синтез -цепи гемоглобина, содержащей 146 аминокислотных остатков. Каждая молекула РНК производит сотни -цепей в зрелом эритроците имеется около 100 000 000 молекул гемоглобина. [c.461]

    Недавно было обнаружено, что глутаматсинтетаза, по-видимому обеспечивает основной путь включения азота в аминокислоты в дрож жах [19] и высших зеленых растениях. В последнем случае восстанав ливающим агентом может служить восстановленный ферредоксин [20] [c.91]

    Выбор соответствующей аминокислоты аминоацил-тРНК—синтетазой имеет чрезвычайно важное значение. Однако трудно представить себе активный центр, способный четко различать структуру двух таких похожих соединений, как изолейцин и валин. Одним из путей точного выбора аминокислоты мог бы служить кинетический механизм корректирования , аналогичный тому, который был описан для ДНК-полимеразы I (разд. Д,4). Действительно, было показано, что валин, ошибочно присоединенный к изолейциновой тРНК. подвергался под действием синтетазы быстрому гидролизу [114а], значительно уменьшая вероятность включения валина в белок в неправильном положении. [c.239]

    Изменения в структуре ДНК встречаются очень редко. Так, например, в среднем ген может удвоиться 10 раз, прежде чем произойдет заметная мутация [128а]. Тем не менее, работая с бактериями нли бактериофагами, мы можем обследовать чрезвычайно большое число особей в поисках мутаций. Если, например, посеять один миллион вирусных частиц на чашку с агаром в условиях, позволяющих распознать мутацию определенного гена, то в среднем мы можем надеяться обнаружить один мутант. Наиболее часто встречаются мутации, обусловленные заменами пар оснований (точковые мутации). Оии происходят в результате включения неправильного основания при репликации или репарации ДНК. При таких мутациях одно основание в триплете кодона замещается другим. В результате возникает другой кодон, что приводит к замене в соответствующем белке одной аминокислоты на другую . Замену одного пиримидина на другой С—)-Т или Т—)-С) или одного пурина на другой пурин иногда называют транзицией, тогда как замену пурина на пиримидин или, [c.246]

    Миллер, Лу и их сотрудники [145а, Ь] с успехом использовали супрессорные мутации и получили с их помощью около 300 мутантных типов Za -репрессорного белка Е. соИ. На первом этапе вводили атЬег-мутации приблизительно в 80 положений гена. Далее с целью клонирования мутантные гены переносили в эписомы (см. следующий раздел). Затем эти вирусоподобные эписомы использовали для заражения пяти штаммов бактерий, несущих супрессорные мутации, благодаря которым считывание кодона UAG (терминирующего) приводило к включению в белок различных аминокислот. Из этих инфицированных бактерий выделяли большие количества мутантных форм 1ас-репрессора. Оказалось, что многие мутации, локализованные вблизи от N-конца, влияют на связывание репрессора с ДНК, тогда как мутации, локализованные в центральной части, влияют на связывание с индуктором. [c.256]

    Один из методов, использованных для выяснения направления репликации у . oli, состоял в следующем. В хромосому бактерии в сайте att (рис. 15-1) встраивали профаг X, а во многие другие сайты, локализованные вдоль хромосомы, встраивали ДНК фага Ми-1 [189]. Особенно удобно использовать в этом случае фаг Ми-1, поскольку его включение может происходить во многих сайтах, локализованных в пределах хорошо картированных генов. Включение в пределах какого-то гена инактивирует этот ген (мутация добавки), что позволяет точно определить место локализации профага Ми-1. Удалось получить целую серию штаммов бактерий, содержащих как профаги X, так и фаг Ми-1, причем последний был локализован в различных участках хромосомы. Эти бактерии были, кроме того, ауксотрофны по определенным аминокислотам. Благодаря этому репликацию можно было останавливать. [c.272]

    Дифтерийный токсин представляет собой белок с мол. весом 62 ООО. Его минимальная летальная доза для морской свинки составляет всего лишь 0,16 мг/кг. Исследования, проведенные на культуре клеток, показали, что токсин блокирует включение аминокислот в белки в результате инактивации-фактора элонгации EF-2, необходимого для транслокацин в рибосомах млекопитающих. Токсин действует аналогично ферменту, переносящему ADP-рибозильную группу от NAD" " к фактору EF-2  [c.305]

    Т. происходит на участках ДНК, наз. единицами Т. или транскриптонами. В начале и конце транскриптона расположены специфич. нуклеотидные последовательности-соотв. промотор и терминатор. Существование множества транскриптонов обеспечивает возможность незавиеимого считывания разных генов, их индивидуального включения и выключения. У животных, растений и др. эукариот в состав транскриптона, как правшю, входит один ген. Транс-криптоны бактерий обычно наз. оперонами ми. из них содержат по неск. генов, обычно функционально связанных (напр., кодирующих неск. ферментов, участвующих в синтезе той шш иной аминокислоты). [c.619]

    Ser — NH2 в 11 раз выше, чем у морфина. Дерморфин -уникальный пример включения D-аминокислоты (D-аланина) в природную пептвдную цепь. [c.525]

    В последние годы было твердо установлено, что процессы включения аминокислот в белок тесно связаны с нзитичием РНК В этих системах, и, следовательно, РНК участвует в процессе биосинтеза белка. Каким же образом 20 аминокислот, находящихся в клетке, соединяются пептидными связями в специфическую и генетически определенную последовательность  [c.263]


Смотреть страницы где упоминается термин Аминокислоты, включение: [c.148]    [c.199]    [c.266]    [c.224]    [c.299]    [c.693]    [c.88]    [c.89]    [c.199]    [c.200]    [c.84]    [c.91]    [c.243]    [c.489]    [c.271]    [c.100]    [c.200]    [c.170]   
Сборник Иммуногенез и клеточная дифференцировка (1978) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

включения



© 2024 chem21.info Реклама на сайте