Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез в бесклеточной системе

    Этот цикл у бактерий удается целиком осуществить в простой бесклеточной системе, состоящей из ДНК-матрицы и очищенной РНК-полимеразы, без каких бы то ни было дополнительных факторов. Это не значит, что РНК-полимераза является единственным белком, участвующим в транскрипции. В ней могут участвовать и разнообразные регуляторные белки. Однако роль их вспомогательная они мешают или помогают РНК-полимеразе на тех или иных стадиях цикла транскрипции, которые она осуществляет и в их отсутствие. Поэтому изучение цикла транскрипции изолированной бактериальной РНК-полимеразой позволяет понять не только ферментативные механизмы синтеза молекулы РНК, но, что еще важнее, дает ключ к пониманию механизмов регуляции транскрипции. [c.137]


    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]

    ТРАНСЛЯЦИЯ И ОБЩИЕ ТРЕБОВАНИЯ К СИНТЕЗУ БЕЛКА В БЕСКЛЕТОЧНОЙ СИСТЕМЕ [c.511]

    Выделение бесклеточной системы, ответственной за синтез белка [c.265]

    Включение меченых аминокислот также можно изучать, инкубируя аминокислоты в бесклеточной системе, полученной из печени крысы. При работе обычными методами синтеза белок можно и не обнаружить, поскольку вполне возможно, что накопления белка в такой системе происходить не будет. [c.265]

    Мы уже обсуждали ранее вопрос о разобщенности процессов транскрипции и трансляции, т. е. о том, чо т-РНК отделяется от матрицы ДНК и мигрирует в другую часть клетки для осуществления белкового синтеза. Однако не исключено, что процессы эти не обязательно должны быть разобщены, т. е. синтез белка может идти, нока т-РНК еще остается прикрепленной к гену. Такой процесс вполне возможен у бактерий или у многоклеточных животных, клетки которых имеют ядерные рибосомы. Эта точка зрения получила подтверждение в опытах с бесклеточной системой, в которой ДНК присоединяется к рибосомам с помощью т-РНК [198]. [c.282]


    Говоря о вирус-специфических репликационных белках, следует подчеркнуть, что во многих случаях в незараженной клетке имеются белки с аналогичной функцией. Причем в искусственных бесклеточных системах можно наблюдать, как клеточные ферменты работают на вирусной ДНК, а вирусные ферменты — на клеточной ДНК- Однако in vivo в зараженной вирусом клетке ситуация иная- Так, если вирус кодирует собственную ДНК-полимеразу (напри.мер, фаг Т4 нли вирус герпеса), то репродукцию такого вируса может обеспечить только вирусный фермент и этот вирусный фер.мент не катализирует синтез клеточной ДНК в зараженной клетке. Это кажущееся противоречие — высокая специфичность по отношению к матрице л vivo и низкая л w/ro — имеет [c.282]

    Финалом этой истории было использование синтетических полинуклеотидов с регулярной нуклеотидной последовательностью в качестве матриц в бесклеточных системах синтеза полипептидов на рибосомах. Методы синтеза регулярных полинуклеотидов были разработаны Г. Хорана, и им же генетический код был прямо проверен путем использования их как матриц. В полном соответствии с кодом, использование поли(иС) в качестве матрицы дало полипептид, построенный из чередующихся серина и лейцина, а поли(иО) приводил к синтезу регулярного полипептидного сополимера с чередующимися валином и цистеином. Поли (AAG) кодировал синтез трех гомополимеров полилизина, полиаргинина и полиглютаминовой кислоты. [c.15]

    В соответствии с вышесказанным трансляция интактной MS2 РНК в бесклеточных системах, а также, по-видимому, и in vivo начинается с инициации синтеза белка оболочки. Трансляция С-цистрона приводит к тому, что рибосомы движутся вдоль него по направлению к S-цистрону и расплетают структуру РНК по мере своего продвижения. Это приводит к открыванию инициирующего района цистрона S. Таким образом, еще до окончания трансляции С-цистрона первой рибосомой и синтеза первой молекулы белка оболочки инициирующий район S-цистрона делается доступным, и происходит инициация синтеза субъединицы РНК-репликазы. [c.235]

    Геминконтролируемая инициация трансляции в ретикулоцитах. Давно было известно, что синтез белка (главным образом, гемоглобина) в ретикулоцитах кролика и других млекопитающих, а также в лизатах ретику-лоцитов и ретикулоцитных бесклеточных системах требует присутствия гемина. В отсутствие гемина синтез белка быстро затухает. [c.259]

    Интересно сравнить биосинтез соединения (6) и альтернариола [лактона кислоты (18)]. Биосинтез альтернариола осуществляется комплексной синтетазой, которая изучалась и в бесклеточной системе [20]. В этом случае стадия ацилирования должна включать последовательное ацилирование малонильных групп ацильными звеньями от С2 до Си. Здесь нет стадий восстановления и очевидна необходимость предотвращения преждевременной циклизации. Подобным же образом при синтезе соединения (20)—предшественника тетрациклина (см. разд. 29.1.3.6) по меньшей мере первые семь звеньев вероятного промежуточного соединения (19) (выделенные в формуле рамкой) должны быть собраны в единую структуру (19) (или в ее енолизированную форму) прежде, чем произойдет хотя бы одна циклизация. На этом же примере можно видеть, как влияет одна стадия восстановления — дегидрирования на весь процесс биосинтеза г ис-конфигурация двойной связи в (19) поворачивает растущую молекулу и таким образом помогает закрепить определенное пространственное расположение цепи, необходимое для специфической циклизации. [c.422]

    Общий механизм синтеза ДНК. Основываясь на данных о двухспиральной антипараллельной структуре, химическом составе ДНК (см. главу 3) и значении активированной формы энергии для биосинтеза полимерных молекул, А. Корнберг еще в 1955 г. указал на возможность синтеза ДНК энзиматическим путем в бесклеточной системе в присутствии изолированной из Е. соИ ДНК-полимеразы и предшественников дезоксирибонук-леозидтрифосфатов. Реакция, практически осуществленная в 1967 г., сводится к синтезу новой молекулы ДНК  [c.481]

    Остановимся на анализе тех условий, которые необходимы для осуществления синтеза белка в бесклеточной системе. В современных представлениях о синтезе белка вьщающуюся роль сыграли три экспериментальных подхода, разработанные в начале 50-х годов. Во-первых, в классических исследованиях П. Замечника и сотр. при использовании меченых [c.511]

    В ряде лабораторий (в частности, в лаборатории С. Бреннера) были получены данные о возможности существования в клетках в соединении с рибосомами короткоживущей РНК, названной информационной (иРНК). Сейчас она обозначается как матричная РНК (мРНК), потому что ее роль заключается в переносе информации от ДНК в ядре (где она синтезируется под действием ДНК-зависимой РНК-полимеразы) до цитоплазмы, где она соединяется с рибосомами и служит матрицей, на которой осуществляется синтез белка. Эта блестящая гипотеза затем экспериментально бьша доказана в лаборатории М. Ниренберга. При изучении влияния различных фракций клеточной РНК на способность рибосом, выделенных из Е. oli, к синтезу белка было установлено, что некоторые из них стимулировали включение С-аминокислот в синтезируемый полипептид. Добавление синтетического полинуклеотида, в частности полиуридиловой кислоты (поли-У), в белоксинтезирующую систему приводило к включению в синтезирующуюся белковую молекулу единственной аминокислоты -фенилаланина. Поли-У вызывал синтез в бесклеточной системе необычного полипептида полифенилаланина. Таким образом, искусственно синтезированный полирибонуклеотид, добавленный к препаратам рибосом, включавшим известные к тому времени факторы белкового синтеза и источники энергии, вызывал синтез определенного, запрограммированного полипептида. [c.519]


    Негистоновые белки содержат не основные, а кислотные остатки. НГБ очень гетерогенны. Их м. м. варьируют от 10 000 до 150 000. Они разнообразны функционально. Свойства и строение НГБ изучены еще недостаточно, но несомненно их участие в регуляции генов. Способность НГБ стимулировать синтез РНК в бесклеточной системе зависит от состояния их фосфорилирования. Сформулирована гипотеза, согласно которой ген включается присоединением негистоиового белка к специфическому участку ДНК, репрессированному гистоном. НГБ фосфорилируются и приобретают отрпцательные заряды. Позтому они отталкивают также отрицательно заряженную ДНК и покидают ее вместе с положительно заряженными гистонами. Остается свободный участок ДНК, способный к транскрхшции. [c.297]

    KF или NaF ингибирует трансляцию в клетках млекопитающих и в бесклеточных системах. При 30 мМ KF ингибирует инициацию синтеза белка в лизатах ретикулоцитов, при этом лишь незначительно влияет иа элонгацию цепи [JB 250, 3443 (1971)]. Предполагается, что фторид препятствует присоединению 608-субъедини-цы к 408-инициаториому комплексу. Нет сведений об аналогичном действии в прокариотах. [c.231]

    Крист. Раств-сть р. Н О, H Ij, ЕЮН, МеОН. Ингибирует синтез цитоплазматического белка эукариот, но не прокариот. В бесклеточной системе из печени при 1 мг/мл ингибирует на 75%, в интактных ретикуло-цитах при 0,03 мг/мл на 95%. О механизме действия -противоречивые сообщения, но предполагается, что происходит ингибирование инициации, элонгации и терминации, причем степень воздействия на ту или иную стадию зависит от конц. антибиотика [АВВ 182, 171 (1977)]. Неуст. в щел. [c.232]

    Само название нуклеиновые кислоты (от лат. nu leus — ядро) показывает, что открыты они были как составная часть клеточного ядра, в котором действительно присутствуют оба класса нуклеиновых кислот — ДНК и РНК. Основным местом локализации ДНК являются структуры клеточного ядра — хромосомы, в которых ДНК находится в виде комплексов с белками — дезоксирибонуклеотидов. ДНК ( 1% от общего количества) также обнаружена в митохондриях всех типов эукариотических клеток и в хлоропластах растительных клеток. В структуре ядерной ДНК заложена информация о видовых специфических признаках, которые определяют характер данной клетки и всего организма и передаются по наследству. В цитоплазме клеток имеются значительные количества РНК, участвующие в реализации генетической информации. Важными открытиями в изучении нуклеиновых кислот, удостоенными Нобелевской премии, явились установление пространственной структуры ДНК Дж. Уотсоном, Ф. Криком и М. Уилкинсом, ферментативный синтез в бесклеточной системе биологически активной ДНК, осуществленный А. Корн-бергом и С. Очоа, блестящие исследования М. Ниренберга, Р. Холи и X. Корана, послужившие предпосылкой для расшифровки генетического кода. [c.171]

    Пути образования фенольных соединений исследовались в течение ряда последних десятилетий наибольших успехов в изучении синтеза фенолов удалось достичь, используя биохимические методы. Для выяснения характера промежуточных соединений применяли три основных метода 1) исследования на бесклеточных системах 2) использование меченых соединений 3) изучение биохимических мутантов (Нейш, 1968). [c.68]

    Этап разрушения (дезинтеграции) клетки этот этап был посвящен поискам той бесклеточной системы, которая может осугцествить синтез белка. [c.264]

    Из приведенного материала явствует, что синтез специфического белка можно продемонстрировать в опытах in vitro. Однако опубликованные данные о таком синтезе немногочисленны [12, 73—76, 124]. Чаш,е всего ссылаются на синтез в бесклеточной системе гемоглобина, белков чехла фага, Р-галактозидазы, дифтерийного токсина, триптофансинтетазы, а-амилазы и запасного глобулина семян гороха. Один из самых интересных примеров синтеза специфического белка обнаружен у личинки синей мухи alliphora erythro ephala, у которой под действием особого гормона, экдизона, на хромосомах слюнных желез образуются вздутые участки, называемые пуффами (стр. 239). Считают, что гормон этот активирует специфические локусы гена, в результате чего на цепях ДНК пуффа образуется специфическая щ-РНК. [c.277]

    В 1935 г. Кребс впервые наблюдал синтез глутамина в опытах со срезами тканей [540]. Образующийся глутамин был выделен в виде хлоргидрата [541]. Кребс отметил, что синтез глутамина в препаратах из тканей морской свинки тормозится в условиях анаэробиоза и при добавлении цианида он пришел к заключению, что этот синтез зависим от реакций, доставляющих энергию [540]. В более поздних работах с бесклеточными системами Бюжар и Лейтгардт [542], Спек [543, 544] и Эллиотт [545—547] нашли, что источником энергии для синтеза глутамина может служить аденозинтрифосфат. Ферментная система синтеза глутамина найдена в печени, мозге и некоторых других тканях различных видов животных, у бактерий и растений [62, 542—556] она катализирует следующую реакцию  [c.269]

    Крупные успехи в понимании биохимических аспектов синтеза белка были достигнуты главным образом благодаря тому, что исследователи научились воспроизводить большинство наиболее важных этапов этого процесса в бесклеточных системах использование различных методов, основанных на применении бесклеточных систем, является одной из наиболее характерных черт современной биохимии. Первая бесклеточная система, предложенная в 1952 г. Сикевицем (работавшим тогда в лаборатории Замечника в Гарвардском университете), содержала микросомную фракцию печени крыс. В последующие три года в лаборатории Замечника и одновременно в нескольких других лабораториях были сделаны важные открытия. Было показано, во-первых, что в микросомной фракции за синтез белка ответственны рибосомы во-вторых, что аминокислоты, принимающие участие в биосинтезе белка, активируются АТФ в реакции, катализируемой специфическими активирующими ферментами аминоацилсинтетазами или ацилазами), которая приводит к образованию неорганического пирофосфата, [c.519]

    Затем следует восстановление, дегидратация и дальнейшее восстановление до бутирил-КоА, который потом может присоединить другую молекулу аце-тил-КоА. Все эти реакции обратимы, и равновесие в них сдвинуто в сторону распада, а не синтеза. Вскоре был сделан вывод о необходимости изучения ферментных систем, хотя и способных синтезировать короткие цепи жирных кислот, но фактически предназначенных для разложения жирных кислот до ацетил-КоА. Однако у животных, растений и микроорганизмов были получены другие бесклеточные системы, которые синтезируют из ацетил-КоА высшие жирные кислоты (например, пальмитиновую). Интересная особенность этих систем состоит в том, что ожидаемые промежуточные соединения, такие, как сложные эфиры КоА жирных кислот с короткой цепью, не накапливаются. Установлено, что для синтеза необходим бикарбонат, хотя сам он в жирные кислоты не включается. Очистка ферментной системы, синтезирующей растворимые жирные кислоты, позволила обнаружить тот факт, что сложный полу-эфир малонил-КоА является промежуточным соединением и что он образован карбоксилирующей системой, представляющей собой фермент, содержащий биотин в качестве простетической группы. Основные особенности этой схемы приведены на рис. 10. Ацетил-КоА превращается в малонил-КоА, который потом включается в синтетазную систему. Таким образом, система, синтезирующая жирные кислоты, рассматривается как полиферментная система, характерной чертой которой является наличие активной SH-группы и связанного ФМН [31]. В ходе процесса малонат переносится к SH-группе фермента и конденсируется с ацетил-КоА, образуя ацетоацетильный фермент. Выделение [c.244]


Смотреть страницы где упоминается термин Синтез в бесклеточной системе: [c.307]    [c.57]    [c.57]    [c.168]    [c.211]    [c.218]    [c.237]    [c.260]    [c.278]    [c.278]    [c.475]    [c.226]    [c.229]    [c.231]    [c.610]    [c.489]    [c.198]    [c.265]    [c.273]    [c.519]    [c.528]    [c.533]    [c.533]   
Биологическая химия Изд.3 (1998) -- [ c.511 , c.512 ]




ПОИСК





Смотрите так же термины и статьи:

Синтез системы



© 2025 chem21.info Реклама на сайте