Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидродинамическая хроматография частиц

    Гидродинамической хроматографией (ГДХ) называют метод, в котором для разделения коллоидально суспендированных частиц в растворе используют в качестве неподвижной фазы гранулы. Заполненный пористой или непористой упаковкой слой представляет [c.73]

Рис. 25.14. Схематическое изображение механизма разделения частиц в гидродинамической хроматографии. Рис. 25.14. <a href="/info/376711">Схематическое изображение</a> <a href="/info/230987">механизма разделения</a> частиц в гидродинамической хроматографии.

    Следует указать на некоторую условность термина неподвижная фаза , поскольку адсорбент или абсорбирующая жидкость не всегда остаются неподвижными. Они могут перемещаться в том же направлении, что и подвижная фаза (но с другой скоростью), или в противоположном. Более того, можно говорить о распределении вещества между двумя областями одной фазы, движущимися с различными скоростями (гидродинамическая хроматография, являющаяся методом разделения коллоидных частиц). [c.30]

    Применение ГПХ для более крупных, твердых частиц известно как эксклюзивная или гидродинамическая хроматография. Хотя эти два типа хроматографии отличаются по своим принципам, они могут применяться одновременно в хроматографической колонке. Они схематически представлены на рис. 6.12. [c.186]

    В гидродинамической хроматографии, ввиду того, что более крупные частицы находятся дальше от стенок капилляра, они подвергаются воздействию более быстрого потока в центре канала по сравнению с меньшими частицами, чьи центры находятся ближе к медленному потоку у стенки канала. [c.186]

    На рис. 6.20 показаны результаты измерений распределения по размерам частиц одного и.того же образца латекса использованы электронная микроскопия (подсчитано свыше 4000 частиц), дисковая центрифуга, четыре различных прибора P S и гидродинамическая хроматография. [c.201]

    До сих пор мы полагали, что среда покоится и диффузионные потоки заметным образом не возмущаются гидродинамическими потоками. Сорбцию молекул или ионов из растворов ведут обычно при перемешивании. В хроматографии и при сорбции в динамических условиях поглощение растворенных частиц ведется из потока. Для определения скорости ноглощения в таком случае уравнения диффузии должны рассматриваться совместно с уравнениями гидродинамики. Вопрос о диффузии из потока к поглощающей сфере был обстоятельно рассмотрен Левичем [2]. Из проведенного им рассмотрения следует, что поток диффузии к поглощающей сфере в движущейся жидкости не распределен равномерно по ее поверхности. Поток диффузии максимален в точке набегания жидкости и убывает на задней стороне сферы. Вблизи поглощающей сферы наблюдается резкий спад концентрации поглощаемых частиц. Это позволяет ввести понятие об эффективном неподвижном диффузионном слое, в пределах которого перенос растворенных молекул или ионов осуществляется только молекулярной диффузией, а вне которого осуществляется полное перемешивание и концентрация постоянна. Толщина диффузионного слоя подбирается так, что если ее значение подставить в решение уравнения диффузии, то получается наблюдаемое на опыте значение диффузионного потока. Многочисленные опыты показали, что толщина эффективного диффузионного слоя зависит от скорости  [c.67]


    Ширина хроматографической зоны сильно зависит от размера зерен ионита. Поскольку ширина зоны в теории хроматографии отражается высотой теоретической тарелки (гл. 6), последняя уменьшается за счет измельчения смолы значительнее, чем при изменении любых других параметров опыта. Казалось бы в соответствии с этим, что нужно стремиться использовать смолу столь мелкую, какую только можно получить. Однако с измельчением частиц увеличивается гидродинамическое сопротивление слоя, поэтому приходится искать оптимум. Нередко прибегают к подаче жидкости через колонку под давлением, для чего применяют насосы с контролируемой скоростью течения. Если раствор подавать в колонку без насоса под действием силы тяжести, то для колонок высотой 30—60 см целесообразно использовать смолу [c.174]

    Для того, чтобы стал возможен прямой ввод в хроматографическую колонку сложных проб, содержащих резко различающиеся по молекулярным массам компоненты, внешняя поверхность сорбента должна быть инертна по отношению к крупным молекулам в пробе. Однако определение лекарственных препаратов, как правило, выполняется на гидрофобных сорбентах, на которых белковые молекулы необратимо сорбируются и денатурируются, забивая поверхность и пространство между частицами сорбента. Давление на входе в колонку растет, и ее дальнейшая эксплуатация становится практически невозможной. В то же время для белков инертна гидрофильная поверхность, покрытая, например, гидроксильными или аминогруппами. Поэтому нужно, чтобы сорбент, предназначенный для определения лекарственных препаратов при прямом вводе биологических жидкостей в хроматографическую колонку, имел на внешней поверхности гидрофильное покрытие, а внутри пор содержал покрытие из гидрофобных групп. При этом крупные молекулы не должны проникать в поры, т.е. диаметр пор должен быть меньше, чем гидродинамический диаметр крупных молекул. В этом случае будет действовать эксклюзионный эффект для крупных молекул, и они будут выходить из колонки практически без разделения за время, меньшее мертвого времени колонки для молекул, проникающих в поры, будут действовать обычные механизмы адсорбционной, распределительной или ионообменной хроматографии. [c.529]

    Микрочастицы сшитого полимера диаметром менее 1000 нм можно разделять по размерам так же, как и макромолекулы в органических растворителях на пористых стирогелевых колонках [68]. В частности, при изучении сшитых частиц полистирола и полибутилакри-лата микрочастицы диаметром более 90 нм разделяются с помощью гидродинамической хроматографии. Частицы меньшего диаметра делятся по механизму ГПХ с помощью дифференциального рефрактометра и фотометра, работающего в видимой области спектра. [c.119]

    Гидродинамическая хроматография, в которой частицы-золя с различными размерами распределяются по-разному вдоль стенок в направлении потока, была применена для разделения коллоидных частиц. Смолл [165] описал такой способ и запатентовал его [166] для разделения частиц субмикронных размеров. Однако, по всей вероятности, этот способ не может быть применен для разделения коллоидных частиц очень небольшого размера. Применительно к этому методу была предложена [167а] математическая модель. Дальнейшее усовершенствование в области седиментационного фракционирования в потоке было описано Гиддингсом и соавторами [1676, 167в]. [c.476]

    Из обсуждения в разд. 1.3.2 и 1.4.2 следует, что в препаративной хроматографии используют два типа эффективности собственную эффективность колонки, которая определяется динамическими и гидродинамическими свойствами упакованного слоя, конструкцией аппаратуры, свойствами материала насадки и т. д., разделительную эффективность, которая существенно зависит от природы и количества образца и физико-химических характеристик разделительной системы. Число тарелок N используется как мера любого типа эффективности, но первая эффективность обычно определяется при идеальных, а последняя — при реальных условиях. Как отмечено выше, собственная эффективность колонки измеряется при малых нагрузках в условиях, когда изотерма адсорбции или распределения линейна (ср. разд. 1.4.4). Каждая колонка, используемая в препаративной хроматографии, должна иметь собственную эффективность, измеренную в аналитических условиях (малые нагрузки), как можно большую для данной комбинации конструкции колонки и материала насадки. Эмпирически установлено, что длина, или высота, тарелки к в эффективной колонке приблизительно равна удвоенному диаметру частиц ((/р), которыми упакована колонка. Таким образом, колонка длиной 30 см, заполненная насадкой с размером частиц 10 мкм, должна содержать примерно 15 тысяч тарелок в идеальных условиях (/1 2 р = 2-10мкм = = 20 мкм или 0,002 см 30 см//г= 15000). Частицы размером 100 мкм в той же самой колонке должны давать 1500 тарелок (30 см/(2-0,01) = 1500). Многочисленные факторы, приводящие к уменьшению этой величины для идеальной колонки, показанные на рис. 1.6, рассматриваются в работах [39—47, 50—59] и не будут здесь анализироваться подробно. [c.36]


    Зерна типа б более пригодны для хроматографии. Они в меньшей степени подвержены врозии и прочнее, слой этих частиц обладает меньшим гидродинамическим сопротивле-евем. Такие частицы выдерживают большие рабочие давления и высокие скорости потока подвижной фазы. [c.227]

    Для хроматографии на ионообменных смолах предпочитают пользоваться монофункциональными (гомоионными) ионитами. Обычно это смолы типа стирол-дивинилбензол. Наличие в смоле функциональных групп лишь одного типа позволяет надеяться на более четкое разделение. Параметры хроматографического процесса должны быть таковы, чтобы при движении подвижной фазы в колонке существовало равновесие между подвижной и неподвижной фазами. Решающую роль при этом играет размер частиц ионита. Чем мельче частицы, тем быстрее устанавливается равновесие, т. е. тем большей может быть скорость потока подвижной фазы. В то же время с уменьшением размера частиц растет гидродинамическое сопротивление колонки. Если частицы ионита достаточно прочны (неорганические иониты, ионообменные смолы), то хроматографирование можно вести под давлением (см. гл. 8). Некоторые более мягкие иониты, например на основе полидекстрана, не выдерживают повышенных давлений. В любом случае необходимо выявить оптимальный вариант. Типичные размеры частиц ионитов, предназначенных для различных целей, приведены в табл. 5.8. В хроматографии очень важно применять как можно более однородные по размеру частицы, поэтому поступающие в продажу хроматографические иониты фракционируют по размерам частиц. Частицы традиционных ионообменных целлюлоз представляют собой не шарики, а палочки диаметром 18—20 мкм и длиной 20—300 мкм однако недавно удалось получить целлюлозные иониты в виде шариков. В промышленных или пилотных установках следует использовать смолы с более крупными частицами, например размером 850—2000 мкм (т. е. 10— 20 меш). [c.266]


Смотреть страницы где упоминается термин Гидродинамическая хроматография частиц: [c.30]    [c.227]    [c.79]    [c.95]    [c.97]    [c.8]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.74 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Гидродинамическая хроматография

Гидродинамическая хроматография хроматографы

Гидродинамические хроматографы



© 2025 chem21.info Реклама на сайте