Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вектор гибридных белков

    Принцип действия клеточного дисплея заключается в экспрессии на поверхности клеток гетерологичных белков (белков-пассажиров), которые отсутствуют у данного организма, объединенных в составе гибридной молекулы с помощью пептидного спейсера с полипептидной цепью белка-носителя, обеспечивающего заякоривание всей конструкции в мембране клеток. При этом используют гибридные белки трех типов, в которых белок-пассажир находится на N-конце, С-конце или во внутренней части белка-носителя в виде сэндвича. Для успешного выполнения своих функций белки-носители должны отвечать, по крайней мере, четырем требованиям 1) обладать эффективной сигнальной или транспортной последовательностью, обеспечивающей прохождение гибридного белка через внутренние мембраны клеток 2) проявлять сильные якорные свойства для прочного удерживания белка-пассажира на поверхности клеток 3) должны быть совместимыми с белками-пассажирами, т.е. не дестабилизироваться после объединения с ними 4) демонстрировать устойчивость к протеолитическим ферментам, присутствующим в периплазматическом пространстве или культуральной жидкости. В качестве векторов для генов гибридных белков используют экспрессирующие плазмиды или хромосомы вирусов. [c.350]


    Последовательность оснований длиной 6 — 8 нуклеотидов, расположенная непосредственно перед инициирующим кодоном АУГ у Е. соИ, определяет эффективность процесса трансляции. Эта последовательность представляет собой участок связывания мРНК с рибосомой, и его сдвиг в ту или иную сторону способен уменьшать эффективность трансляции мРНК. По имени исследователей, идентифицировавших этот участок, он был назван последовательностью Шайн-Дальгарно. Обычно эту последовательность включают в состав самого вектора вместе с инициирующим кодоном на нужном расстоянии. При экспрессии векторов такого типа образуется гибридный белок, в котором несколько N-концевых аминокислотных остатков происходят от источника регуляторных элементов и инициирующего кодона прокариотического гена. Такие гибридные белки часто более стабильны обработка их химическим или ферментативным способом приводит к вьщелению эукариотической части белка. [c.123]

Рис. 6.8. Специфическая локализация гибридных белков САТ-8У-40 после трансфекции клеток МШЗТЗ рекомбинантными конструкциями на основе челночных векторов. А. Реакция гибридного белка САТ-фрагмент большого Т-антигена (аминокислоты —271) с моноклональными антителами, узнающими К-концевой участок Т-антигена, демонстрирует, что гибридный белок локализуется в ядре. Б. Реакция гибридного белка САТ-фрагмент малого 1-антигена (аминокислоты 1—174) с моноклональными антителами, узнающими уникальный участок последовательности 1-антиге-на, демонстрирует, что гибридный белок локализуется в цитоплазме. Для выявления связывания антител с гибридными белками использовалась пероксидазная система иммунодетекции (как описано в табл. 6.7). Рис. 6.8. <a href="/info/1780055">Специфическая локализация</a> <a href="/info/1345685">гибридных белков</a> САТ-8У-40 <a href="/info/1338478">после трансфекции</a> клеток МШЗТЗ рекомбинантными конструкциями на <a href="/info/1409704">основе челночных</a> векторов. А. <a href="/info/1320502">Реакция гибридного</a> белка САТ-фрагмент большого Т-антигена (аминокислоты —271) с <a href="/info/141261">моноклональными антителами</a>, узнающими К-концевой участок Т-антигена, демонстрирует, что <a href="/info/1345691">гибридный белок</a> локализуется в ядре. Б. <a href="/info/1320502">Реакция гибридного</a> белка САТ-фрагмент малого 1-антигена (аминокислоты 1—174) с <a href="/info/141261">моноклональными антителами</a>, узнающими уникальный <a href="/info/101784">участок последовательности</a> 1-антиге-на, демонстрирует, что <a href="/info/1345691">гибридный белок</a> локализуется в цитоплазме. Для выявления <a href="/info/97341">связывания антител</a> с <a href="/info/1345685">гибридными белками</a> использовалась <a href="/info/1412287">пероксидазная система</a> иммунодетекции (как описано в табл. 6.7).
    Проблема внутриклеточной стабильности рекомбинантных белков больше связана с деградацией небольших пептидов, поскольку крупные нативные белки более стабильны в бактериальных клетках. Один из подходов, позволяющих стабилизировать короткие чужеродные пептиды в клетках Е. соН, - включение требуемого пептида в состав гибридного белка. В этом случае последовательность нуклеотидов, кодирующую гибридный белок, соединяют в составе экспрессирующего вектора в одной рамке считывания с бактериальным геном, кодирующим белок (например, геном -галактозидазы). Образующийся в результате экспрессии такого рекомбинантного гена гибридный белок в своем составе содержит в N- или С-концевой части требуемый пептид, защищенный основным белком-носителем от протеолитической деградации. Для отделения пептида от белка-носителя их соединяют друг с другом последовательностью аминокислот, по которой можно провести специфическое расщепление полипептидной цепи. В том случае, если пептиды не содержат метионина, соединение белка-носителя и пептида осуществляют через эту аминокислоту, и отщепление пептида производят с помощью бромистого циана. Такой подход был использован, например для получения рекомбинантного соматостатина, а также А- и В-цепей инсулина. [c.117]


    Система S-Tag. Работа системы основана на взаимодействии 15-звенного S-пептида рибонуклеазы А со 103-звенной последовательностью того же фермента, которые образуют специфический очень прочный комплекс (А 10 М) [168]. Последовательность S-Tag присоединяют генно-инженерными методами к N-концевой части рекомбинантного белка в составе экспрессирующего вектора и по завершении экспрессии гибридный белок выделяют с помощью аффинной хроматографии на колонке с протеин S-агарозой. Элюирование целевого белка можно осуществлять с помощью энтерокиназы, распознаваемую последовательность которой вводят в виде линкера между целевым рекомбинантным белком и последовательностью S-Tag. Для тех же целей может быть использован и тромбин в сочетании с расщепляемой этой протеиназой аминокислотной последовательностью. В данном случае с колонки освобождается нативный рекомбинантный белок с правильной N-концевой последовательностью. Альтернативно, элюирование гибридного белка с колонки можно проводить в денатурирующих условиях (ЗМ гуанидинтиоциана-том, 0,2 М цитратом, pH 2, или 3 М Mg l2). В этом случае маркер- [c.129]

    Вектор для экспрессии в Е. oli, содержащий irp-промо-тор и регуляторные сигналы. В приведенном примере кодирующая часть гена обратной транскриптазы (ро/) ретровируса (разд. 5.7.г) встроена в полилинкер, примыкающий к кодирующему участку гена trpE. Образующийся гибридный белок функционально аналогичен [c.358]

    Основным преимуществом бацилл с точки зрения создания молекулярных векторов является их способность секретировать из клеток в культуральную среду большие количества определенных белков. Это связано с тем, что клеточная стенка у грамположительных бактерий организована более просто, чем у грамотрицательных. Исходя из общности механизмов секреции белков через плазматическую мембрану в клетках различных типов, чрезвычайно заманчиво конструировать методами генетической инженерии гибридные гены, в которых чужеродная кодирующая последовательность состыкована с ген-эквивалентом сигнального пептида какого-либо секретируемого белка Ba illus. Если детерминируемый таким искусственным геном химерный продукт будет способен секретироваться в культуральную среду, то это значительно упростит очистку изучаемого белка. Возможно, в таком случае чужеродный белок в бактерии будет синтезироваться интенсивнее, чем в варианте без секреции, так как он в меньшей степени будет нарушать метаболизм клеток. Данное направление исследований — изучение механизма секреции, создание векторов экспрессии-секреции — в генетической ин-, женерии бацилл имеет большое практическое [c.233]

    Возможность экспрессии клонированных эукариотических генов в клетках Е. соИ способствовала углубленному изучению множества белков, представляющих интерес для фундаментальных научных исследований и медицины. В тех случаях, когда нативный негибридный белок экспрессируется недостаточно эффективно, часто экспрессия белков или их фрагментов в виде гибридов с полипептидами Е.соИ, такими, как -галактозидаза, оказывалась более успешной. К тому же гибридные белки можно легко очищать с помощью хроматографических методов, разработанных для -галактозидазы. Эукариотические белки, экспрессируемые в составе гибридных продуктов, были с успехом использованы при изучении иммунологически важных участков поверхностных антигенов [1], функций рекомбинантных полипептидов [2], при получении иммунологических зондов, необходимых для исследования ранее не изученных антигенов [3—6], для экспрессии вариантных форм белковых субъединиц и для выделения и исследования клонов ДНК из экспрессирующихся библиотек генов [8—10]. Технология работы с экспрессирующими векторами достигла столь высокого уровня развития, что стало возможным осуществлять в клетках Е. соН достаточно эффективную экспрессию практически любой кодирующей последовательности с образованием гибридного продукта, который можно выделить с помощью разнообразных биохимических методов и использовать его либо в различных функциональных исследованиях либо в качестве иммуногена. Синтез чужеродного полипептида в виде гибридного белка с -галактозидазой, по всей вероятности, значительно увеличивает стабильность этого полипептида в клетках Е. соИ. По-видимому, стабильность белка, а не сила промотора — наиболее важный фактор для успешной экспрессии рекомбинантных белков в бактериях. [c.138]

    Рпс. 5,3. Два примера аномального поведения гибридных белков. Фрагмент кДНК Antennapedia был встроен в вектор Xgtll в двух разных рамках считывания. Самый большой по размеру из мажорных продуктов (дорожка 1) синтезируется при считывании с неправильной рамкой, но вследствие чрезвычайно высокого содержания G в ДНК и пролина в белке образующийся продукт обладает такой же подвижностью, как продукт, кодируемый правильной рамкой считывания черная стрелка, дорожка 1). Вторая рамка считывания (дорожка 2) правильная, и размер ее мажорного продукта (дорожка 2, черная стрелка) также соответствует заранее рассчитанному. Однако этот белок не является полноразмерным гибридным белком. Минорный продукт большего размера (дорожка 2, светлая стрелка) выявляется при окрашивании с использованием антител к -галактозидазе (данные не представлены) и антител к С-концевому участку белка (данные не приведены). Высокое содержание пролина в гибридном белке приводит к увеличению кажущейся молекулярной массы на 10—15 кДа. Этим объясняется ошибочный вывод о том, что обладающий низкой подвижностью продукт деградации является полноразмерным белком. [c.146]


    В фагмидных экспрессирующих векторах на месте стыковки гена белка оболочки и клонируемого гена часто помещают кодон терминации трансляции. При таком устройстве вектора система дисплея начинает функционировать только в супрессорных штаммах Е. соИ, а в отсутствие супрессии в бактериальных клетках синтезируется исследуемый белок клонотеки. Этот подход исключает необходимость переклонирования изучаемой последовательности нуклеотидов после отбора белка с нужными функциями с помощью фагового дисплея. Однако ограниченная эффективность супрессии может сделать уровень экспрессии гибридного белка на поверхности фаговых частиц очень низкой. [c.336]

    Во-вторых, использование схемы а приводит к образованию гибридного, или слитого (fusion) полипептида, в котором чужеродная для клетки, но целевая для исследователя аминокислотная последовательность располагается на С-конце молекулы. Как правило, чужеродный белок в гибридной форме нефункционален, но его антигенная структура сохраняется. Таким образом, для некоторых аналитических целей гибридный полипептид может быть использован. Чтобы получить чужеродный белок в индивидуальной форме, его отщепляют от гибридного полипептида с помощью специфических эндопептидаз и других реагентов (табл. 10.2). Например, в векторе M13mpllFX клонирована последовательность [c.331]

    Помимо суперпродукции, повышенной гидро-фобности и неправильного образования дисульфидных связей формированию водонерастворимых конгломератов чужеродных белков в Е. со// способствуют и другие факторы, которые пока точно не известны. Однако совершенно ясно, что в нерастворимых включениях белок, по крайней мере частично, денатурирован, а для его перевода в растворимую форму требуется полная денатурация с разрушением дисульфидных связей. Для растворения белковых телец включения их обрабатывают в жестких денатурирующих условиях додецилсульфатом натрия, гуа-нидингидрохлоридом, мочевиной и т. п. с добавлением 2-меркаптоэтанола, дитиотреитола и др. Заключительным этапом очистки таких белков является их ренатурация, необходимая для получения функционально активного продукта. Удельная активность ре-натурированного генно-инженерного белка при этом часто не достигает уровня, свойственного природной форме. Получаемый таким образом препарат содержит балласт в виде измененных форм целевого белка, который может вызывать негативные эффекты при попадании в организм человека или животных. Поэтому при конструировании бактериальных штаммов — продуцентов эукариотических белков медицинского назначения необходимо стремиться к получению целевого белка в растворимом виде и не допускать его преципитации. Наиболее просто добиться высокого уровня продукции эукариотического белка без формирования телец включения можно, создавая штаммы, секретирующие этот белок в окружающую среду. Продуктивен также подход с использованием экспрессирующих векторов широкого круга хозяев и последовательным введением полученных на их основе гибридных плазмид в разные бактерии для поиска оптимальной пары. [c.284]


Смотреть страницы где упоминается термин Вектор гибридных белков: [c.139]    [c.174]    [c.175]    [c.331]    [c.333]    [c.335]    [c.409]    [c.376]    [c.356]    [c.357]    [c.134]    [c.987]    [c.139]    [c.170]    [c.123]    [c.135]    [c.379]    [c.170]    [c.334]    [c.446]    [c.110]    [c.136]    [c.161]    [c.255]    [c.418]   
Новое в клонировании ДНК Методы (1989) -- [ c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Вектор

гибридная



© 2025 chem21.info Реклама на сайте