Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Специфическое расщепление полипептидной цепи

    Специфичность. Трипсин специфически гидролизует пептидные связи по карбоксильной группе лизина и аргинина, т. е. типа -Lys-X- и -Arg-X-. Однако специфичность фермента не абсолютна, например фрагменты -Lys-Pro- и -Arg-Pro- устойчивы к действию трипсина. Присутствие кислотных остатков вблизи атакуемой связи приводит к резкому снижению скорости гидролиза, а в некоторых случаях полностью его исключает. Положительно заряженные группы также снижают скорость гидролиза. Например, если Arg и Lys находятся в ближайшем соседстве или расположены на N-конце полипептидной цепи, происходит лишь частичное расщепление пептидных связей. [c.147]


    Основная проблема, однако, состоит в том, что белковая молекула, состоящая из идентичных субъединиц, будет давать пептидную карту с гораздо меньшим числом фрагментов, чем предсказывает теория на основе только молекулярного веса. С другой стороны, изозим, состоящий из разных полипептидных цепей, может дать пептидную карту с большим числом пептидов, чем ожидается для идентичных полипептидных цепей и с меньшим числом пептидов, чем можно ожидать на основе молекулярного веса всей белковой молекулы, потому что некоторые части разных полипептидных цепей имеют идентичную первичную структуру. Ферментативный гидролиз можно заменить неферментативным расщеплением пептидных связей, например при реакции белка с бромцианом. В этом случае расщепление полипептидных цепей происходит специфически по остаткам метионина [78]. [c.402]

    Расщепление полипептидной цепи на фрагменты под действием протеолитических ферментов. Трипсин и химотрипсин-это специфические ферменты, катализирующие гидролитическое расщепление полипептидов в определенных местах их цепи (табл. 6-6). Ниже приведена последовательность В-цепи полипептидного гормона инсулина. Учтите, что цистиновый поперечный мостик между А- и В-цепями уже разорван под действием надмуравьиной кислоты (см. рис. 6-12). [c.162]

    С-Концы пептидных цепей определяются избирательным отщепле нием концевой аминокислоты с помощью специфического фермента — карбоксипептидазы и последующей идентификацией этой аминокислоты. Если макромолекула белка состоит из двух (или более) пептидных цепей, как в случае инсулина (см. рис. 53), то избирательно разрушают дисульфидные мостики окислением (например, надмуравьиной кислотой) и затем полученные полипептиды разделяют путем фракционирования на ионитах. Для определения последовательности расположения аминокислот в каждой полипептидной цепи ее подвергают частичному кислотному гидролизу и избирательному расщеплению с помощью ферментов, каждый из которых разрывает полипептидную цепь только в определенных местах присоединения какой-то одной определенной аминокислоты или одного типа аминокислот (основных, ароматических). Таким образом получают несколько наборов пептидов, которые разделяют, используя методы хроматографии и электрофореза. [c.376]


    С помощью фермента химотрипсина можно осуществить специфическое расщепление полипептидной цепи в местах расположения тирозиновых остатков, что позволяет выделить две основные части макромолекулы [60]. Одна часть цепи, составляющая 60 7о, содержит только глициновые, аланиновые и сериновые остатки и дает характерную рентгенограмму порошка, подобную наблюдаемой на нативном фиброине. Другая часть содержит все массивные аминокислотные остатки, а также небольшие количества глицина, аланина и серина. Эти аналитические результаты согласуются с предположением К. Мейера [61] о том, что глициновые, сериновые и аланиновые остатки образуют кристаллические области полимера, тогда как прочие остатки связаны с аморфными или некристаллическими областями. [c.115]

    Специфическое расщепление полипептидной цепи [c.72]

    Окисленная рибонуклеаза. Действие химотрипсина на рибонуклеазу менее специфично, чем действие на этот субстрат трипсина. Об этом свидетельствуют более низкие выходы полипептидов при разделении гидролизата методом ионообменной хроматографии [154]. В выделенных полипептидах установлено наличие 151 аминокислотного остатка, в то время как в полипептидах, полученных в результате расщепления трипсином, обнаружено всего 124 остатка. По-видимому, это объясняется тем, что некоторые участки полипептидной цепи появляются более чем в одном из пептидных обломков. О более сложном составе гидролизата можно судить по небольшим количествам примесей (как правило, не выше 15%), присутствующих в большинстве основных фракций. Эти примеси не мешали определению аминокислотного состава фракций, но их присутствие еще раз подчеркивает трудности, которые встречаются при фракционировании смесей пептидов, полученных менее специфическими методами гидролиза. Гидролизаты рибонуклеазы были получены инкубированием в течение 24 час с ферментом при pH 7. При более кратковременном инкубировании гидролизат содержал дополнительно [c.204]

    При специфическом ферментативном гидролизе или химическом расщеплении любого белка среднего молекулярного веса получается довольно сложная смесь пептидов. Выделение и очистка всех пептидов, из которых состояла полипептидная цепь и которые содержатся в нефракционированном гидролизате, — задача достаточно трудная. Поэтому гидролизат белка рекомендуется сначала подвергнуть предварительному разделению. Среди современных методов фракционирования наиболее подходящим для этой цели является гель-фильтрация. [c.226]

    Подобного рода процедуры значительно расширяют возможности использования трипсина в качестве специфического реагента для расщепления пептидных связей, так как, подвергнув модифицированную полипептидную цепь ряду последовательных обработок трипсином, исследователь может получить перекрывающиеся пептиды. [c.90]

    ПЕРВИЧНАЯ СТРУКТУРА белка, последовательность аминокислотных остатков в полипептидной цепи. В П. с., закодированной в соответствующем данному белку структурном гене, заложено все необходимое для ее самоорганизации в глобулу с определенной пространств, структурой. П. с. определяет вторичную и третичную структуры белка. Методы ее установления хорошо разработаны полипептидную цепь специфически расщепляют протеиназами (трин-сином — по остаткам аргинина и лизина, химотрипсином — по остаткам аром, аминокислот и лейцина) или хим. методами (бромцианом по остаткам метионина) в полученном наборе перекрывающихся пептидных фрагментов определяют последовательность аминокислот, используя преим. ступенчатое расщепление по Эдману (процесс автоматизирован), и сопоставляют строение фрагментов. [c.429]

    Таким образом, результаты этих опытов показывают, что конформация молекулы, обусловливающая ее ферментативную активность, полностью определяется последовательностью аминокислот в полипептидной цепи. Для того чтобы остатки цистеина соединились правильно, пе нужно никакого специального фермента. Образование специфических дисульфидных связей требуется, по-видимому, лишь для стабилизации активной конформации, а не для ее возникновения. В результате восстановления и последующего окисления рибонуклеазы образуется продукт, имеющий ту же ферментативную активность, ультрафиолетовый спектр, характеристическую вязкость, дисперсию оптического вращения и те же иммунологические свойства, что и нативный фермент. Пептидные карты, получаемые после ферментативного расщепления этих двух веществ, также идентичны. Если 6l.i расположение дисульфидных связей в нативной и реконструированной рибонуклеазе было различным, пептиды, содержащие такие связи, не могли бы попасть, на одинаковые места карты. [c.279]

    Методы, принятые для определения последовательности аминокислот в белках, широко используют ферментативную деструкцию и последующее изучение осколочных полипептидных цепей небольшого размера и перекрывающегося строения, выделяемых и характеризуемых после проведения процесса деструкции. Тем не менее сохраняется необходимость в разработке избирательных и количественных химических методов расщепления основной цепи макромолекул белков. В последние годы было найдено несколько химических методов расщепления пептидных связей но остаткам метионина, триптофана, гистидина и тирозина. Многие из этих методов очень специфичны, причем расщепление протекает в таких местах молекулы белка, которые недоступны действию ферментов. Эти химические методы могут найти применение для специфического расщепления одной, двух или трех пептидных связей молекулы белка — соседних с аминокислотными остатками, встречающимися в молекуле один, два или три раза соответственно. [c.387]


    Серьезной трудностью здесь является то, что простые пептиды обладают очень низкой (если они вообще обладают ею) каталитической активностью, которую нельзя даже сравнить с активностью ферментов. Реакции, которые наблюдали в лабораторных условиях, представляли собой простое расщепление или деструкцию, протекающие с малой специфичностью. Отнюдь не все типы реакций синтеза приводят к созданию биологических систем. Как отмечалось в гл. 10, мол. масса белков, катализирующих быстро протекающие специфические ферментативные реакции, превышает 10 000. Это, по-видимому, связано с тем, что у молекул такого размера полипептидная цепь при свертывании может сформировать активный центр с соответствующей структурой.  [c.138]

    Проблема внутриклеточной стабильности рекомбинантных белков больше связана с деградацией небольших пептидов, поскольку крупные нативные белки более стабильны в бактериальных клетках. Один из подходов, позволяющих стабилизировать короткие чужеродные пептиды в клетках Е. соН, - включение требуемого пептида в состав гибридного белка. В этом случае последовательность нуклеотидов, кодирующую гибридный белок, соединяют в составе экспрессирующего вектора в одной рамке считывания с бактериальным геном, кодирующим белок (например, геном -галактозидазы). Образующийся в результате экспрессии такого рекомбинантного гена гибридный белок в своем составе содержит в N- или С-концевой части требуемый пептид, защищенный основным белком-носителем от протеолитической деградации. Для отделения пептида от белка-носителя их соединяют друг с другом последовательностью аминокислот, по которой можно провести специфическое расщепление полипептидной цепи. В том случае, если пептиды не содержат метионина, соединение белка-носителя и пептида осуществляют через эту аминокислоту, и отщепление пептида производят с помощью бромистого циана. Такой подход был использован, например для получения рекомбинантного соматостатина, а также А- и В-цепей инсулина. [c.117]

    Рестриктирующие эндонуклеазы, детерминируемые хромосомой Е. соИ, — это крупные белки с мол. весом порядка 300 000—400 000, состоящие из полипептидных цепей трех типов. Они явно связываются со специфическими участками и неспецифически разрушают прилегающие к ним участки. Для их действия необходимо наличие АТР, ионов Mg2+ и S-аденозилметионина. Уникальная особенность этих белков состоит в способности вызывать гидролиз необычно больших количеств АТР [215]. Значение всех этих свойств рестриктирующих ферментов остается до сих пор неясным. Второй класс рестриктирующих ферментов состоит из относительно небольших мономерных или димерных белков с мол. весом 50 000—100 000. Местом атаки этих ферментов служат, как правило, нуклеотидные последовательности с локальной симметрией второго порядка [217]. Так, например, для двух рестриктирующих эндонуклеаз, детерминируемых ДНК плазмиды R-фактора Е. соН, и рестриктирующего фермента Hemophilus influenzae были идентифицированы следующие участки расщепления (в приведенной ниже схеме стрелками показаны места расщепления, звездочками — места метилирования, а точками — локальная ось симметрии второго порядка)  [c.279]

    Последовательность аминокислотных остатков в полипептид-,ной цепи называется ее первичной структурой. Определение пер.-вичной структуры производится путем частичного гидролиза белка с помощью специфических протеаз, катализирующих расщепление пептидной связи лишь между определенными остатками. Так, трипсин атакует лишь те пептидные связи, которые образованы СО-группами остатков основных аминокислот — Apr или Лиз. В результате образуется смесь коротких полипептидных цепей, олигомеров. Такие короткие цепи называются пептидами. Их исследование производится посредством химических и физико-химических методов (хроматография, масс-спектроскопия). Воздействуя другим ферментом, можно разрезать белок по другим связям, получить смесь других пептидов. N- и С-конце-вые остатки белка (см. стр. 68) определяются в результате их химической модификации, предшествующей частичному гидролизу. Зная строение пептидов, полученных при специфическом расщеплении различными ферментами, можно установить первичную структуру белка. Допустим, что белковая цепь имеет структуру [c.73]

    Характерной особенностью биологически активных белков является лргУпгть. с которой они изменяются под влиянием тепла, ферментов, кислот и различных орГанйческих соединений.. При этом происходит денатурация белка 102 с полной утратой его, биологической активности. Денатурация, которая, как правило, является необратимым процессом, представляет собой скорее фи зическую или внутримолекулярную перегруппировку,, чем химическое изменение структуры нативного белка она меняет специфическую пространственную конформацию макромолекулы,/ но не сопровождается гидролизом ковалентных связей. В живых организмах эта конформация возникает в результате взаимодействия боковых ответвлений полипептидных цепей, являясь термодинамически неравновесной во время денатурации белок переходит в равновесную денатурированную форму. При достаточно сильном воздействии ферментов, тепла и различных химических агентов могут все же произойти более глубокие изменения вплоть до расщепления макромолекулы на отдельные аминокислоты вследствие гидролиза по пептидным связям. [c.331]

    Исследование первичной структуры включает целый ряд этапов 1) определение числа отдельных полипентидных ценей, входящих в молекулу белка 2) расщепление связей между этими полипептидными цепями и выделение индивидуальных цепей 3) специфическое расщепление каждой из поли-нептидных цепей нативной молекулы на меньшие цепи (фрагменты) удобной величины 4) определение аминокислотной последовательности в каждом из фрагментов 5) выяснение порядка расположения фрагментов в цепи и установление таким путем уникальной последовательности аминокислот в каждой из цепей нативного белка 6) идентификация мест, в которых индивидуальные пептидные цепи соединены друг с другом. Таким образом, молекулу белка расщепляют, затем определяют структуру продуктов расщепления [c.86]

    Превращение триисиноген -> трипсин осуществляется проще, чем соответствующее превращение химотрипсиногена, поскольку здесь образуется только один продукт. Активация может катализироваться как самим трипсином, так и ферментом энтерокиназой, а также некоторыми протеиназами, выделенными из плесеней. При активации происходит отщепление от полипептидной цепи N-концевого гексапептида, как это схематически показано на фиг. 125. Важную роль в процессе активации играет ион кальция, специфически ускоряющий расщепление по определенной пептидной связи и одновременно тормозящий разрыв связей в других местах (при расщеплении [c.427]

    Протеолитические ферменты катализируют гидролиз пептидных связей. Эти ферменты обычно подразделяют на два класса протеиназы (гидролизующие белки) и пептидазы (гидроли--зующие пептиды). Классификация эта, однако, не отличается строгостью, так как протеиназы способны расщеплять некоторые пептиды, а многие пептидазы действуют также на белки. Например, аминопептидазы разрушают полипептидные цепи путем последовательного отщепления N-концевой аминокислоты эта реакция может повторяться до тех пор, пока ббльшая часть белковой молекулы не разрушится. Кар-боксипентидазы осуществляют ступенчатое расщепление пептидов и белков, начиная с С-концевой аминокислоты. Известны, однако, некоторые пептидазы, которые действуют только на пептиды. Так, например, дипептидазы специфически гидролизуют дипептиды. Дипептидазы и аминопептидазы обнаружены у высших растений [9, 35]. Поскольку гидролитические ферменты распространены чрезвычайно широко, кажется вероятным, что систематические ноиски позволят обнаружить в растительных тканях целый ряд других пептидаз. [c.202]

    Определение последовательности аминокислотных остатков — первичной структуры белка, т.е. его химического строения, — еще более сложная задача. Например, на выяснение первичной структуры гормона инсулина (это белок с относительно небольшой молекулярной массой, участвующий в регулировании сахарного обмена в организме) английскому биохимику Ф. Сэнджеру потребовалось 10 лет. В основе работы Сэнджера лежало гидролитическое расщепление белка на небольшие фрагменты и определение аминокислотной последовательности в них. Для гидролиза был использован набор специфических ферментов, каждый из которых был способен расщеплять полипептидную цепь в определенном месте. Сэнджер установил, что молекулу инсулина образуют две полипеп-тидные цепи (21 и 30 аминокислотных остатков), связанные друг с другом дисульфидными связями (—5—5—), которые образуются между остатками содержащей серу аминокислоты — цистеина. [c.389]

    Исходя из этого можно ожидать появления в организме человека и животных антител, обладающих самыми неожиданными ферментативными активностями, гены большей части которых элиминируются в процессе эмбрионального развития. Подтверждением данного предположения служит открытие в организме больных астмой аутоиммунных антител, специфически расщепляющих эндогенно образующийся пептидный гормон - вазоактивный кишечный пептид (VIP), а также аутоиммунного расщепления фактора VIII свертывания крови у больных гемофилией. По-видимому, по мере накопления экспериментальных данных число таких примеров будет увеличиваться. На скрытую потенциальную полифункциональность полипептидных цепей указывает также наличие у многих ферментов аллостерической регуляции, проявляющейся в различных формах, разная субстратная специфичность аллельных вариантов различных ферментов, а также изменение субстратной специфичности некоторых ферментов при изменении условий окружающей среды. [c.448]

    Полипептидные цепи могут подвергаться специфическому расщеплению, например при превращении проколлагена в коллаген и проинсулина в инсулин. Трансляция мРНК вируса полиомы дает очень длинную полипептидную цепь, которая гидролизуется с образованием нескольких белков. [c.105]


Смотреть страницы где упоминается термин Специфическое расщепление полипептидной цепи: [c.344]    [c.623]    [c.287]    [c.287]    [c.30]   
Смотреть главы в:

Принципы структурной организации белков -> Специфическое расщепление полипептидной цепи

Принципы структурной организации белков -> Специфическое расщепление полипептидной цепи




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи

специфическая

специфическая специфическая



© 2025 chem21.info Реклама на сайте