Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белок транспорт через мембрану

    Процессы транспорта, будь то облегченный или активный транспорт, представляются весьма сложными и протекают с участием нескольких мембранных белков. Иногда для описания транспортной системы используют термин пермеаза. В связи с тем что количества белков, вовлеченных в транспорт веществ, незначительны, для изучения транспортных систем были использованы методы генетического анализа. Можно надеяться, чго с помощью этих методов удастся определить число генов, детерминирующих белки, которые участвуют в переносе конкретных соединений через мембраны. [c.358]


    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]

    ТРАНСПОРТ СИНТЕЗИРОВАННЫХ БЕЛКОВ ЧЕРЕЗ МЕМБРАНЫ [c.530]

    Липиды составляют вместе с белками и углеводами основную массу органического вещества живой клетки. Они присутствуют в организмах различного происхождения растительных, животных, бактериальных. В высокой концентрации липиды (особенно фосфолипиды) обнаружены в различных органах животных и человека головном и спинном мозге, крови, печени, сердце, почках и т. д., особенно велико содержание липидов в нервной системе (20—25%). Липиды входят в состав всех структурных элементов клетки, в первую очередь клеточных мембран, и мембран субклеточных частиц липиды (в виде липопротеидов) составляют не менее 30% общей сухой массы мембраны. С участием липидов протекают такие важнейщие биохимические процессы, как передача нервного импульса, активный перенос через мембраны, транспорт жиров в плазме крови, синтез белка и другие ферментативные процессы, особенно процессы, связанные с цепью переноса электронов и окислительным фосфорилированием. [c.185]


    Втор 1Я важная функция белков — транспорт веществ. У одноклеточных это в основном транспорт через мембрану. Внутрь клетки должны поступать многочисленные вещества, обеспечивающие ее строительным материалом и энергией. В то же время фосфолипидная мембрана непроницаема для таки.х важнейших компонентов, как аминокислоты, сахара, ионы щелочных металлов. Их проникновение внутрь клетки из окружающей среды происходит при участии специальных транспортных белков, вмонтированных в мембрану. Наприме 5, у многих бактерий имеется специальный белок, обеспечивающий перенос через наружную мембрану молочного сахара — лактозы (6). Последняя представляет собой дисахарид, образованный молекулами глюкозы и ее изомера галактозы  [c.35]

    Окисление жира дает энергию для поддержания температуры тела, для активного синтеза аминокислот, белков, для транспорта веществ через мембраны и т.д. [c.318]

    Нервная система преобразует поступившие через органы чувств раздражения — физические (свет, звук,, температура, давление, прикосновение), химические (от веществ, находящихся в воздухе, пище или жидкостях внутренних сред организма) — в нервный импульс. В основе этих превращений лежат химические превращения биомолекул. Раздражающий стимул воспринимается высокоспецифическим белком-рецептором, находящимся в возбудимой мембране. В результате такого взаимодействия изменяются конформация белка, проницаемость мембраны, активность связанного с мембраной фермента, ионный транспорт через мембрану, что приводит к многократному усилению ответа на первоначальный стимул. Функциональные изменения рецептора обратимы. [c.53]

    Благодаря своему строению экдизоны проявляют анаболический эффект, влияют на метаболизм углеводов, белков, нуклеиновых кислот, на процессы ионного транспорта через биологические мембраны. [c.293]

    Биогенные вещества связываются и транспортируются как альбуминами, так и глобулинами, а ксенобиотики транспортируются преимущественно альбуминами. Реагирование лекарственных веществ с белками происходит посредством водородных связей, электростатического и гидрофобного взаимодействий. Связанные с белками лекарства не проходят через мембраны и гистогематические барьеры не участвуют в фармакологических эффектах не подвергаются химическим превращениям, в связи с чем дольше циркулируют в крови. Лекарства иногда конкурируют друг с другом за связывание с белками. Транспорт лекарств может осуществляться клетками крови (эритроциты, в меньшей степени — лейкоциты тромбоциты транспортируют биогенные амины). Активными являются несвязанные (свободные) формы лекарств. Для реализации их действия требуется связывание с макромолекулами, выполняющими роль клеточных рецепторов, или мишени (белки, нуклеиновые кислоты, сложные липиды). Лекарства накапливаются в тех тканях, где имеются рецепторы к ним. [c.483]

    Белки эритроцитов представлены гемоглобином и небольшим количеством белков стромы. В мембране эритроцитов есть два основных типа белков поверхностные и интегральные. Поверхностные белки локализованы на внутренней цитоплазматической поверхности мембраны. К ним относятся глицеральдегид-З-фосфат-дегидрогеназа, актин, спектрин. Цепи спектрина образуют разветвленную волокнистую сеть. Спектрин стабилизирует и регулирует вместе с актином форму мембраны эритроцитов, которая изменяется при прохождении клеток через капилляры. Интегральные белки расположены внутри мембраны. Их можно отделить от нее только с помощью детергентов или органических растворителей. В мембране имеется анионный канал, делающий ее проницаемой для НСО3 и СГ. В формировании канала участвует димерный белок, составляющий 1/4 от общего количества белка в мембране. Этот канал необходим для транспорта СО2 эритроцитами. [c.432]

    Структурная. Липиды в комплексе с белками являются структурным компонентом всех клеточных мембран. В связи с этим они участвуют в транспорте веществ через мембраны, рецепции и в других мембранных процессах. [c.185]

    Липидный бислой определяет основные структурные особенности биологических мембран, тогда как белки ответственны за большинство мембранных функций. Они выступают в качестве специфических рецепторов и ферментов, осуществляют транспорт через мембрану различных веществ и т. д. Большинство мембранных белков пронизывает бислой в виде одиночной а-спирали но есть и такие, которые пересекают бислой несколько раз в виде серии а-спиралей. Следующая группа белков ассоциирует с мембраной, не пересекая бислой, а прикрепляясь к той или другой стороне мембраны. Многие из этих белков связаны нековалентными взаимодействиями с трансмембранными белками, есть и такие, которые [c.376]

    Анализ различными физическими методами выделенных из клеток фосфолипидов, клеточных мембран, а также целых клеток показал, что температуры, соответствующие резкому изменению скорости трансмембранного переноса, лежат вблизи температур фазового перехода. кристалл — жидкий кр,металл для соответствующих препаратов фосфолипидов (в основном— фосфатидилэтаноламина) [422]. При температурах, меньщих температуры перехода, мембраны состоят из молекул липидов, упакованных в гексагональную кристаллическую решетку. В такие мембраны утоплены молекулы белков-переносчиков, и транспорт через пих весьма затруднителен. При температуре фазового перехода происходит резкое увеличение подвижности углеводородных цепей, мембрана становится жидкой, трансмембранная диффузия и активный перенос веществ оказываются облегченными (см. в частности [143]). [c.216]


    Стопка Гольджи ориентирована в клетке строго определенным образом и имеет две функционально различные поверхности. На одном конце стопки цистерны специализированы для приема везикул, содержащих вновь синтезированные гликопротеины. Это так называемая цыс-поверхность стопки. В ходе синтеза на внешней поверхности эндоплазматического ретикулума белок либо проникает внутрь просвета сети ретикулума, либо встраивается в его мембрану. Этот процесс зависит от типа белка. После того, как сборка белка закончена, часть мембраны эндоплазматического ретикулума с вновь синтезированными белками выпячивается, образует везикулу, которая транспортируется к цыс-поверхности аппарата Гольджи и сливается с ней (см. рис. 63). Это первый этап транспорта белка через систему аппарата Гольджи. Белок, претерпевая ряд превращений, начинает движение к транс-по-верхности аппарата Гольджи и затем покидает его в составе липидной везикулы. [c.178]

    Весьма вероятно, что реакции фосфорилирования— дефосфорилирования играют роль в регуляции таких процессов, как мышечное сокращение, секреция, транспорт веществ через мембраны, передача нервных импульсов и сенсорное восприятие, рост и дифференци-ровка, индукция синтеза белков и их деградация. Исследования соответствующих регуляторных механизмов осложняются отсутствием достаточно полных данных о молекулярной природе самих процессов. Однако важная роль сАМР-ПК была показана в ряде случаев, например при регуляции адреналином сокращений сердечной мышцы. [c.93]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    В этом свете надо рассматривать и исключения. Понятно, что у таких примитивных организмов, как бактерии, динамические состояния, связанные с анаболизмом и катаболизмом, развиты довольно плохо, а активный транспорт хорощо выражен. Главное для бактерий —питание и размножение, а не выживание отдельной особи. Для млекопитающего было бы бессмысленным расточительством поддерживать гемоглобин или казеин (белки, расходуемые или выводимые из тела) в динамическом состоянии. В случае ДНК динамическое состояние было бы даже опасным ведь задача ДНК как раз и состоит в том, чтобы оставаться в безопасности и неизменности, а не подвергаться риску. Но в целом динамические состояния оказались полезными. Мы не знаем организма, который бы обходился без них, и вместе с тем динамические состояния никогда не наблюдались нигде, кроме живой клетки. Сложные механизмы, необходимые для их поддержания и требующие тонкого контроля, могли развиться в эволюции только постепенно, за долгое время, в результате проб и ошибок. Эволюция транспорта Через мембраны рассматривается в работе Тостесона [1866]. [c.23]

    Интересные результаты получены при изучении ионного транспорта через подобные мембраны и электропроводности элементарных пленок обратных эмульсий, стабилизированных природными и синтетическими ПАВ различной природы. Выяснилось, в частности, что электропроводность таких мембран резко возрастает при добавлении некоторых биологически-активных ПАВ. Например, введенне во внешнюю водную среду липидной мембраны ничтожных количеств антибиотика валиномицина приводит к увеличению электропроводности мембраны на пять порядков величины вместе с тем мембрана становится проницаемой для ионов калия и водорода, но не пропускает через себя ионы натрия. Резкое понижение электрического сопротивления искусственных мембран может наблюдаться и при введении в их состав молекул белков, а та,кже ферментов с добавкой в систему соответствующего субстрата. Изучение свойств таких мембран позволяет моделировать ряд важных биологических процессов, например прохождение нервного импульса, образование фоточувствительной ячейки и др. [c.291]

    Мономерные фосфорилированные нуклеозиды играют важнейшую роль в метаболизме и биоэнергетике, в регуляции жизнедеятельности на молекулярном уровне. Это яркое свидетельство химического единства живой природы (с. 24), разнообразного использований кйётками одних и тех же веществ. Среди нуклео-зидов особенно существен аденозин. На рис. 2.6 изображена структура аденозин-5 -моно-, ди- и трифосфата (АМФ, АДФ, АТФ). АТФ является главным аккумулятором химической энергии в клетке. Эта энергия выделяется при гидролитическом отщеплении 7-фосфата в реакции АТФАДФ + Фв (Фв—фосфорная кислота Н3РО4). Энергия АТФ расходуется на все нужды клетки для биосинтеза белка, для активного транспорта веществ через мембраны, для производства механической и электриче- [c.40]

    Устройство мембраны, показанное на рис. 10.2, таково, что белки как бы плавают в липидном море . Их молекулы погружены с двух сторон мембраны на разную глубину в двойной слой подвижных углеводородных хвостов липидов. Имеются белки, проходящие через всю мембрану. Значительная часть поверхности мембраны свободна от белков так, белки занимают 70 7о поверхности мембраны эритроцита и 80 7о поверхности мембраны мпкросомы. Транспорт малых ионов и молекул происходит по каналам в мембранах. В устройстве и функционировании каналов особенно существенна роль белков. Природа каналов— важная проблема физики мембран (см. 11.4). [c.338]

    Термин строительный блок применительно к мембранным молекулам может создать ложное впечатление, что их функции являются исключительно структурными. Из материала двух последующих глав станет ясно, что ббльшая часть этих молекул, если не все, выполняют дополнительные функции. Они могут служить барьерами или воротами, антигенами или рецепторами, ферментами или ионными насосами, функционировать как транслоказы (белки-переносчики для транспорта метаболитов через мембраны) или как специфические центры узнавания. Отдельные молекулы мембран не следует рассматривать изолированно, так как их характерные свойства проявляются при взаимодействии с другими молекулами мембран. В последние [c.35]

    Экспериментальные исследования показали, что запасенный в организме медведя жир служит для него единственным источником энергии во время спячки. Образующейся при окислении жиров энергии хватает на поддержание температуры тела, активный синтез аминокислот и белков, а также на другие требующие энергии процессы, такие, как транспорт веществ через мембраны. Большие количества воды, выделяющейся при окислении жиров (разд. 18.6), компенсируют потерю воды в процессе дыхания. Кроме того, при расщеплении триацилглицеролов образуется глицерол, который затем превращается в глюкозу путем его ферментативного фосфорилирования с образованием глицеролфосфата и окисления последнего до дигидроксиа-цетонфосфата. Образующаяся в ходе расщепления аминокислот мочевина ре- [c.636]

    Система активного переноса и транспорта через биологические мембраны чрезвычайно сложна. Рабочим телом здесь служат специальные белки, а источником энергии является аденозинтрифосфор-ная кислота (АТФ). При активном переносе первым этапом поглощения является взаимодействие поглощаемых веществ с молекулами поверхностных структур протоплазмы. Адсорбированные молекулы переносятся затем в цитоплазму посредством механизма активного переноса. Предполагается, что в этих процессах ведущая роль принадлежит специальным транспортным системам — мембранным переносчикам, природа которых еще недостаточно изучена. Одним из звеньев такой системы могут быть мембранные транспортные АТФ-азы, активируемые ионами магния, калия и натрия. Так, в последнее время из мембран некоторых микроорганизмов выделены белки, участвующие в транспорте аминокислот. Обнаружены и изучаются белковые системы, ответственные за перенос сахаров в частности глюкозы. [c.15]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Использование энергии АТФ. Химическая энергия АТФ постоянно используется в клетках организма для поддержания всех энергопотребляемых биологических процессов (рис. 14). Так, в скелетных мышцах АТФ обеспечивает энергией процессы мышечного сокращения и расслабления. При сокращении энергия гидролиза АТФ используется для взаимодействия сократительных нитей актина и миозина, их передвижения (скольжения). Сократительные белки превращают химическую форму энергии в механическую энергию мышечного сокращения. При расслаблении энергия АТФ используется для активного транспорта ионов Са " через мембраны ретикулума против градиента его концентрации (механизмы активного транспорта веществ рассмотрены в главе 5). [c.43]

    Соматотропный гдрмон стимулирует рост и развитие тела, увеличивает рост трубчатых костей в длину, усиливает синтез белка, нуклеиновых кислот и гликогена, т. е. проявляет анаболическое действие. Кроме того, он способствует мобилизации жиров из жировой ткани, усиливает их окисление, а также транспорт аминокислот через мембраны. Этот гормон уменьшает скорость окисления углеводов в тканях, что способствует повышению ее уровня в крови. Недостаток соматотропного гормона в раннем возрасте приводит к карликовости без нарушения умственного развития, а избыток — к гигантизму. Если избыток гормона проявляется в юношеском возрасте, то могут несимметрично увеличиваться конечности и подбородок. Возникает заболевание акромегалия. В настоящее время получен синтетический гормон роста, идентичный человеческому, что позволяет успешно лечить больных с нарушением секреции этого гормона СТГ — единственный гормон, который имеет видовую специфичность действия. [c.141]

    Наши первые исследования белкового состава миелина были посвящены изучению микрогетерогенности белков, извлеченных последовательно неионным детергентом — тритоном Х-100 и анионным детергентом — додецилсульфатом натрия. Приступая к выполнению этих исследований, мы руководствовались следующими соображениями. До последнего времени нейрохимики изучали преимущественно растворимые белки нервной ткани. Очень мало работ было посвящено нерастворимым белкам различных структур нервной ткани, в том числе и такой специфической мембранной структуре, какой является миелин. Между тем роль нерастворимых белков в процессах внутриклеточного обмена веществ и в транспорте ионов и метаболитов через мембраны не менее важна для функций клетки, чем роль растворимых белков гиалоплазмы. [c.24]

    Все каналообразующие белки и многие белки-переносчики позволяют растворенным веществам проходить через мембраны только пассивно ( с горки ). Этот процесс называется пассивным транспортом (или облегченной диффузией). Если молекула транспортируемого вещества не имеет заряда, то направление пассивного транспорта определяется только разностью концентраций этого вещества по обеим сторонам мембраны (градиентом концентрации). Однако если молекула заряжена, то на ее транспорт влияют как градиеш концентрации, так и разница электрических потенциалов на сторонах мембраны (мембранный потенциал). Вместе концентрационный и электрический градиенты составляют электрохимический градиент. Фактически в любой плазматической мембране есть градиент электрического поля. При этом внутренняя сторона мембраны обычно заряжена отрицательно по отнощению к наружной (см. разд. 6.4.15). Такой потенциал облегчает проникновение в клетку положительно заряженных ионов, но препятствует прохождению внутрь ионов, заряженных отрипательно. [c.382]

    При перемещении груза из одного компартмента в другой транспортные пузырьки обязательно переносят как мембраны, так и содержимое органелл. Тем не менее и при таком выравнивающем процессе сохраняются различия в составе мембран разных компартментов белок-рецептор SRP встречается только в мембране ЭР, а гликозилтрансферазы и ферменты процессинга олигосахаридов расположены только в мембранах определенных цистерн Гольджи и т. д. Следовательно, мембраны ЭР и каждою типа цистерн Гольджи должны иметь специальные механизмы для сохранения своей уникальности. Один из них - наличие специальных сигналов сортировки для каждого этапа продвижения продукта через ЭР и аппарат Гольджи. В результате, например, белки плазматической мембраны, попадающие в клетку путем специфического эндоцитоза. захватываются окаймленными ямками. Однако существует точка зрения, согласно которой при биосинтетическом транспорте через ЭР и аппарат Г ольджи, используется противоположный механизм, г.е. транспорт происходит автоматически, а для удержания продукта в орга-нелле требуются специфические сигналы. В соответствии с этой гипотезой каждый постоянный компонент ЭР или аппарата Гольджи должен иметь специальный сигнал, отвечающий за его сохранение в этом компартменте. Стратегия автоматического движения вперед и избирательного сохранения привлекательна еще и потому, что число белков, проходящих сквозь ЭР и аппарат Г ольджи к месту конечного назначения, значительно больще числа белков, остающихся там. Более того, при такой стратегии те белки, которые утратили свои сигналы сортировки, или были направлены в неверном направлении, могут выводиться из клетки Наконец, если бы сигналы требовались для транспорта, то они были бы необходимы для каждой его стадии - от ЭР к аппарату Г ольджи [c.82]

    Участие посторонних белков в сборке, как оказалось, не соответствует традиционному представлению о наличии прямой аналогии между механизмами свертывания полипептидных цепей в искусственных условиях и клетке. Ставшие известными функции молекулярных шаперонов потребовали определенной коррекции давно сформулированного и многократно подтвержденного в опытах in vitro принципа не нуждающейся в каких-либо посредниках самосборки белка. Выяснилось, что это не совсем так. Более того, оказалось, что в сложных клеточных условиях нужны белки, ассистирующие не только котрансляционное и посттрансляционное свертывание полипептидных цепей, но и помогающие транспорту белковых молекул через мембраны, реорганизации, диссоциации и ассоциации белков в олигомерные комплексы, сборке олигомеров внутри органелл и ликвидации белковых повреждений, вызванных стрессовыми и иными внешними воздействиями. [c.420]

    Перенос белков через мембраны митохондрий и хлоропластов в принципе аналогичен переносу их через мембраны эндоплазматического ретикулума, описанному в главе 7. Однако здесь есть несколько важных отличий. Во-первых, при транспорте в матрикс или строму белок проходит как через наружную, так и через внутреннюю мембрану органеллы, тогда как при переносе в просвет эндоплазматического ретикулума молекулы проходят только через одну мембрану (см. разд. 7.3.5). Кроме того, перенос белков в ретику-лум осуществляется с помощью механизма направленного выведения (ve torial dis harge)-он начинается тогда, когда белок еще не полностью сошел с рибосомы (котрансляционный импорт, см. разд. 7.3.9), а перенос в митохондрии [c.65]

    Мембранология — современная, стремительно развивающаяся междисциплинарная область естественных наук, находящаяся на стыке биофизики, биохимии, молекулярной биологии, иммунологии, физиологии, генетики, физической и коллоидной химии и др. Она изучает состав, структуру, свойства, функции, локализацию компонентов биологических мембран, их молекулярную и динамическую организацию, особенности межмоле-кулярных взаимодействий и фазовые переходы липидов и белков в мембране, транспорт веществ через мембраны, участие биомембран в осуществлении и регулировании метаболических процессов в клетке, механизмы действия различных физико-химических факторов на мембранные системы и другие вопросы, связанные с исследованием состояния компонентов биомембран и отдельных клеток. [c.7]

    Структура белка после его синтеза может модифицироваться (посттрансляционный процессинг) так, часто наблюдается превращение препрофермен-та в каталически активную форму или удаление ли-дерной последовательности, детерминирующей транспорт белков через мембраны (гл. 42). [c.48]

    Отсутствием транспорта сывороточных альбуминов через мембраны глазных капилляров объясняется задержка мебранами ряда веществ, особенно таких, которые находятся в сыворотке крови в комплексе с белками. [c.216]

    Как видно, фосфорилхолин и ацетилхолин близки по своему химическому строению, благодаря этому АХ конкурирует с фос-фатидилхолином за соединение с белком сЮбразование связи АХ с белком влечет за собой конформационные изменения в белковой молекуле. При этом происходит разрыв связи белка с фосфатиднлхолином, которая осуществляется через ионы Са +. Кальций замещается одновалентными ионами К" , и тем самым повышается проницаемость мембраны для этих ионов. -Следует подчеркнуть, что процессы как пассивного, так и активного транспорта одновалентных ионов и кальция сопряжены и взаимообусловлены, поскольку имеются экспериментальные данные о том, что транспорт Са через мембраны головного мозга осуществляется с помощью Са—Na-обменз. [c.219]


Смотреть страницы где упоминается термин Белок транспорт через мембрану: [c.501]    [c.84]    [c.501]    [c.353]    [c.531]    [c.469]    [c.370]    [c.380]    [c.498]    [c.139]    [c.139]    [c.31]    [c.136]    [c.119]   
Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте