Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышцы метаболическая функция

    Участие компонентов биомембран в осуществлении и регулировании метаболических процессов в клетке. Общая характеристика процессов передачи информации в клетке. Понятие о первичных и вторичных мессенджерах. Классификация, особенности структурно-функциональной организации мембранных белков-рецепторов. Характеристика аденилатциклазного и фосфо-инозитидного пути передачи сигнала в клетку. Роль ионов в осуществлении метаболических процессов с участием мембран. Адсорбционный тип регуляции метаболизма. Понятие о метаболоне, физиологическое значение его образования. Пространствен-но-структурная организация ферментных систем клетки (на примере гликолитического комплекса и цикла Кребса), Экспериментальные исследования взаимодействия ферментов гликолиза с различными структурными компонентами клетки. Модели структуры гликолитического комплекса в скелетных мышцах и на внутренней поверхности мембран эритроцитов. Эстафетный механизм работы ферментов в клетке. Механизмы регулирования функциональной активности векторных ферментов биомембран. Пути нейрогуморальной регуляции функций клеток. [c.284]


    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Белки выполняют в организме различные функции и в соответствии с этим обладают разными свойствами. Так, белки, из которых построены ткани (кожа, сухожилия, мышцы и т. д.), ногти и волосы, не растворяются в воде, в то время как белки, участвующие в метаболических процессах (например, белки плазмы крови), растворяются в воде или в водных растворах солей. [c.192]

    Биохимические функции. Глюкагон является гормоном-антагонистом инсулина. Он стимулирует гликогенолиз и липолиз, а также активирует процесс глюконеогенеза. Глюкагон взаимодействует с клетками-мишенями по мембрано-опосредованному механизму (гл. 11). Через вторичный посредник — цАМФ он активирует протеинкиназу, киназу фосфорилазу и фосфорилазу Ь, что приводит к мобилизации глюкозы из гликогена. Как и инсулин, глюкагон регулирует метаболические процессы преимущественно в печени, мышцах и жировой ткани. [c.167]

    В большинстве рассмотренных нами примеров эндотермии тепло, используемое для регуляции температуры тела, было побочным продуктом той или иной рабочей функции, например мышечного сокращения. Очевидно, что основное назначение работы таких органов, как мышцы, — это не образование тепла для целей терморегуляции. Эндотермия (или необходимый для нее энергетический потенциал) является добавочным продуктом метаболических реакций, лежащих в основе таких функций, как сокращение или перенос ионов. [c.239]


    Все ЭТИ функции имеют тенденцию удалить глюкозу из кровяного русла. Согласно последним данным, инсулин функционирует как привратник клеточной стенки. В отсутствие инсулина молекула глюкозы не может проходить сквозь клеточную стенку. Она, однако, легко проходит через нее в присутствии инсулина. Если инсулин почему-либо отсутствует (например, при сахарном диабете, который разбирается более подробно в гл. 20), то использование глюкозы серьезно нарушается и избыточные ее количества остаются в крови (гипергликемия). В этом случае обычно уровень сахара в крови повышается до уровня почечного порога и глюкоза появляется в моче (глюкозурия). Для усвоения глюкозы клетками мозга или сердечной мышцы инсулин не нужен. Поэтому его отсутствие непосредственно на этих тканях не сказывается. Потеря глюкозы (обусловленная отсутствием инсулина) клетками скелетных мышц и печени также вначале большой опасности не представляет, так как эти клетки в случае крайней необходимости люгут получать энергию за счет других источников. Однако продолжительное отсутствие инсулина (как, например, при сахарном диабете) приводит уже к кризису, т. е. к резкому нарушению вышеуказанного метаболического баланса организма, и в конце концов наступает смерть, если только не ввести в организм инсулин. [c.385]

    Клетка регулирует функции митохондрий и более обычными способами. У млекопитающих главным метаболическим путем переработки азотсодержащих продуктов обмена служит цикл мочевины. Образующаяся при этом мочевина выводится с мочой. Ферменты, кодируемые ядерным геномом, катализируют несколько этапов этого цикла в митохондриальном матриксе. Мочевина образуется лишь в некоторых органах, таких как печень, и ферменты цикла мочевины синтезируются и переходят в митохондрии только в этих органах. Кроме того, дыхательные ферментные комплексы, входящие в состав внутренней митохондриальной мембраны, у млекопитающих содержат несколько тканеспецифических субъединиц, которые кодируются ядром и, вероятно, действуют как регуляторы переноса электронов. Например, > некоторых людей с наследственным заболеванием мышц одна из субъединиц цитохромоксидазы дефектна поскольку эта субъединица специфична для скелетных мышц, волокна сердечной мышцы у этих людей функционируют нормально, что позволяет таким больным выживать Как и следовало ожидать, тканеспецифические различия свойственны и хлоропластным белкам, кодируемым ядерными генами [c.497]

    Установление факта клеточного строения нервной системы еще не означало раскрытия механизмов ее функции. Этот факт мог служить лишь отправной точкой. Как следует из второй половины данного нами определения нейробиологии, задача заключается в том, чтобы понять, как нервные клетки организуются в функциональные системы. Обратимся снова к рис. 1.2 и сравним организацию клеток в других тканях организма. Для железистых органов, например печени, основными функциями должны быть метаболическая и секреторная активность отдельных клеток пространственное расположение клеток таких органов важно только с точки зрения транспорта веществ между клетками и кровью. В других же тканях, например коже, мышцах и кости, на первый план выступают механические факторы, а в таких органах, как легкие или почка, комбинируются метаболические и механические функции. [c.29]

    Характерная функция ионов Са + у живых существ состоит в способности активировать различные метаболические процессы. Это происходит при резких -изменениях проницаемости плазматических мембран или мембран эндоплазматического ретикулума, в результате которых становится возможной диффузия ионов Са + в цитоплазму. Так, например, при сокращении мышцы в результате освобождения ионов Са + из эндоплазматич0окого ретикулума его концентрация увеличивается приблизительно от 0,1 до 10 мкМ . Связывание ионов Са + с тропонином С инициирует сокращение (гл. 4, разд. Е.1) . Мембраны эндоплазматического ретикулума мышечного волокна содержат большое количество белка кальциевого пасоса, а также ряд белков, связывающих кальций (гл. 4, разд. В.8.в) . Один из Са +нсвязывающих белков мышцы кролика, кальсеквестрин (мол. вес 46 500), способен связывать до 43 молей Са + на моль белка"  [c.373]

    Активный транспорт в таких клетках, как мышцы или эритроциты, в действительности не связан с механизмом, рассмотренным выше в рамках модели Хирона — Пригожина. Обычно считается, что сопряжение является свойством самой мембраны, связанным с ферментами, которые составляют ее неотъемлемую часть. В случае такой мембраны, как кожа лягушки, где обе стороны эпителия легко доступны, метаболическая реакция протекает, несомненно, внутри мембраны. Простая модель такой системы, основанная на стационарном сопряжении, исследовалась экспериментально и теоретически Блюмента-лем, Кепленом и Кедем [1]. Эта модель состоит из последовательной комбинации двух мембран, одна из которых обладает катионообменными, а другая — анионообменными свойствами, с заключенным между ними тонким слоем водного раствора фермента. Эта система при наличии снаружи соответствующего субстрата способна создавать электрический ток между двумя идентичными растворами. В стационарном состоянии ее диссипативная функция имеет сокращенную форму [c.36]


    Железо играет ключевую роль во многих метаболических процессах, начиная от переноса кислорода гемоглобином в крови позвоночных животных и кончая центральной ролью в цитохромных структурах. Соответственно минералы железа служат для осуществления столь же широкого ряда функций, включающего перенос и запасание железа, удаление железосодержащих отходов жизнедеятельности, укрепление зубов и ориентацию на местности. Перенос и запасание железа представляют собой, по-видимому, основную функцию минерала ферри-гидрита, образующего, как отмечалось выше, сердцевинную мицеллу сохраняющего железо белка-ферритина. Механизм запасания железа необходим даже организмам, не имеющим в качестве переносчика кислорода гемоглобина. Например, хотя наутилусы и используют для переноса кислорода медьсодержащий белок гемоцианин, их ротовые мышцы содержат миоглобин и, следовательно, железо. Минералы железа служат также для укрепления поверхностного слоя зубцов, покрывающих радулу у хитонов и блюдечек. Животные этих двух групп, живущие в тропических и субтропических водах, используют свои минерализованные зубцы при питании обитающими в каменистом субстрате бактериями и водорослями. Как теперь принято считать, именно они вызывают сильное разрушение береговых утесов на [c.23]


Смотреть страницы где упоминается термин Мышцы метаболическая функция: [c.88]    [c.273]    [c.190]    [c.393]   
Биохимия человека Т.2 (1993) -- [ c.168 ]

Биохимия человека Том 2 (1993) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболические яды

Мышца



© 2025 chem21.info Реклама на сайте