Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичный посредник

    Вторичными посредниками гормонов в клетке являются  [c.548]

Рис. 25-26. Схема, иллюстрирующая действие эстрогена на клетки-мишени в яйцеводе курицы. Будучи жирорастворимым соединением, эстроген проходит через клеточную мембрану и связывается с эстрогенным рецептором-белком с коэффициентом седиментации 48. Далее эстро-ген-рецепторный комплекс превращается в активную 58-форму и в качестве вторичного посредника проникает в ядро, где, взаимодействуя со специфическими участками хроматина, вызывает транскрипцию определенных генов с образованием соответствующих мРНК. Последние выходят из ядра и используются в качестве матриц белкового синтеза на рибосомах. В результате синтезируется ряд белков, характерных для яйцеводов в стимулированном состоянии, например овальбумин. Рис. 25-26. Схема, иллюстрирующая действие эстрогена на <a href="/info/200568">клетки-мишени</a> в <a href="/info/567571">яйцеводе курицы</a>. Будучи жирорастворимым соединением, эстроген <a href="/info/336204">проходит через</a> <a href="/info/1532051">клеточную мембрану</a> и связывается с <a href="/info/91045">эстрогенным рецептором</a>-белком с <a href="/info/128926">коэффициентом седиментации</a> 48. Далее эстро-ген-<a href="/info/292453">рецепторный комплекс</a> превращается в активную 58-форму и в <a href="/info/1768817">качестве вторичного</a> посредника проникает в ядро, где, взаимодействуя со специфическими участками хроматина, вызывает <a href="/info/1386118">транскрипцию определенных</a> генов с образованием соответствующих мРНК. Последние выходят из ядра и используются в <a href="/info/1321278">качестве матриц</a> <a href="/info/91070">белкового синтеза</a> на рибосомах. В результате синтезируется ряд белков, характерных для яйцеводов в стимулированном состоянии, например овальбумин.

    Во всех клетках животных и растений имеются два основных пути передачи сигнала, различающихся по вторичным посредникам -аденилатциклазный и фосфоинозитидный. Эти пути передачи сигнала имеют много общего. В обоих случаях информацию от первого звена рецептора получают и передают через мембрану в цитоплазму так называемые С-6елки, активирующиеся при связывании гуанозинтр и фосфата (ГТФ). G-белки активируют б51ЛЙтгеЛьный фермент на внутренней стороне мембраны, который способствует превращению молекул вещества-предщественника в молекулы вторичного посредника. Конечные стадии разных способов передачи сигналов сходны вторичные мессенджеры вызывают изменение структуры клеточных белков. [c.15]

    G-Белки — регуляторные белки, активирующие фермент, синтезирующий вторичный посредник. [c.469]

    Гормональная регуляция обмена веществ осуществляется специфическими веществами — гормонами (см. главу 7). Гормоны регулируют внутриклеточный обмен через вторичные посредники, такие как циклические нуклеотиды, ионы кальция, а также белками-рецепторами и др. Изменение их содержания в клетке также влияет на скорость метаболизма. [c.37]

    Рецепторы инсулина были обнаружены на поверхности клеток печени, скелетных мышц, а также клеток жировой ткани (адипоцитов). Эти рецепторы были выделены из клеточных мембран и очищены. Выделенный рецептор инсулина является специфическим гликопротеином, который очень прочно связывает инсулин. Число рецепторов инсулина на поверхности клетки меняется в зависимости от условий обмена веществ показано также, что они обладают высокой скоростью оборота. Несмотря на интенсивные исследования, проводящиеся на протяжении многих лет, до сих пор не удается обнаружить вторичный посредник, высвобождаюиршся при связывании инсулина с его рецепторами. Известно лишь, что в механизме, запускающем действие инсулина, важную роль играют внутриклеточные ионы Са принци- [c.798]

    Гормональная - с участием вторичного посредника - циклического АМФ и специальных ферментов - протеинкиназ. [c.35]

    Фосфатидилинозитол входит в состав клеточных мембран животных, высших растений, различных микроорганизмов, особенно высоко его содержание в миелиновых оболочках нервных волокон. Важное значение имеют фосфорилированные производные фосфатидилинозитолов, например фосфатидил-инозитол-4,5-дифосфат, который под действием фосфолипазы С гидролизуется дб моноинозитол-1,4,5-трифосфата и диацилглицерола, играюших роль вторичных посредников в Са -зависимом действии ряда гормонов (гл. 13). [c.296]


    Вторичный посредник — физиологически активное регуляторное вещество, специфически стимулирующее активность протеинкиназ-фер-ментов, переносящих остаток фосфорной кислоты на другие белки, что приводит к изменению их конформации, биологической активности и энергоемкости. [c.460]

    Биохимические функции. Глюкагон является гормоном-антагонистом инсулина. Он стимулирует гликогенолиз и липолиз, а также активирует процесс глюконеогенеза. Глюкагон взаимодействует с клетками-мишенями по мембрано-опосредованному механизму (гл. 11). Через вторичный посредник — цАМФ он активирует протеинкиназу, киназу фосфорилазу и фосфорилазу Ь, что приводит к мобилизации глюкозы из гликогена. Как и инсулин, глюкагон регулирует метаболические процессы преимущественно в печени, мышцах и жировой ткани. [c.167]

    Биохимические функции. Адренокортикотропин воздействует на клетки надпочечников по мембрано-опосредованному механизму, вызывая стимуляцию синтеза и секреции кортикостероидов. Активация аденилатной системы и образование вторичного посредника цАМФ приводят к образованию активных протеинкиназ и фосфорилированию ряда цитоплазматических белков. Например, фосфорилирование эс-тераз приводит к их активации и освобождению холестерина. Кроме того, фосфорилирование белков рибосом приводит к интенсификации процессов трансляции и синтезу белка, в том числе и транспортера свободного холестерина в митохондрии, где и осуществляется синтез кортикостероидов (рис. 12.2). [c.146]

    Вторичный посредник действия инсулина [c.798]

    Примером таких комплексов являются сложные мембранные структуры, включающие рецепторы и преобразователи сигналов, действие которых начинается с восприятия внещнего импульса (первичного посредника) на внещней стороне клеточной мембраны и заверщается образованием вторичного посредника на внутренней стороне мембраны. Рассмотрим передачу и трансформацию сигнала от первичного посредника, роль которого, как правило, выполняют разнообразные гормоны, не проникающие через клеточную мембрану (см. главу 8). [c.316]

    Снятие гормонального сигнала достигается уменьшением концентрации внутриклеточного вторичного посредника (например, фосфодиэстераза превращает цАМФ в не имеющий регуляторного значения 5 -АМФ). [c.379]

    Кальмодулин — вторичный посредник гормонов растений и животных. После присоединения двух ионов кальция из него выделяется активная субъединица, активирующая определенные протеинкиназы. [c.462]

    Механизм регуляции через вторичные посредники очень эффективен, так как значительно усиливает гормональный сигнал и обеспечивает быстрый биологический ответ клетки на повышение концентрации гормонов в крови. Аденилатциклазная система во многом определяет включение срочных механизмов перестройки внутриклеточного обмена при различных воздействиях, в том числе при физических нагрузках, и участ- [c.139]

    Внутриклеточный вторичный посредник включает реакции, которые ведут к изменению функциональной активности белков [c.378]

    Действие гормонов на внутриклеточные процессы через вторичные посредники (цАМФ и другие передатчики) [c.140]

    На роль внутриклеточных вторичных посредников претендует ряд веществ. [c.379]

    В последнее время активно проводятся исследования вторичных посредников (мессенджеров) фитогормонов. В общем виде действие вторичного посредника заключается в том, что небольшое число молекул гормона в клетке вызывает продукцию гораздо большего числа молекул вторичного посредника, а последние в свою очередь положительно или отрицательно влияют на активность белковых молекул. Таким образом происходит умножение сигнала, возникшего при связывании гормона с рецептором. [c.335]

    Гормональная система растений — регуляторный комплекс, состоящий из фитогормонов, их рецепторов и вторичных посредников. [c.461]

    Пути с участием вторичных посредников сАМР и Са взаимодействуют по крайней мере тремя способами. Во-первых, внутриклеточные [c.376]

    Биосинтез и метаболизм. Сигнал, запускающий синтез тиреоидных гормонов, формируется в гипоталамусе в виде тиреолиберина, который, воздействуя на гипофиз, стимулирует синтез и секрецию тиреотропина. Последний взаимодействует с рецепторами на поверхности клеток щитовидной железы и опосредованно, через вторичные посредники, стимулирует синтез ряда белков, в том числе тиреоглобулин — предшественник тиреоидных гормонов. Тиреоглобулин представляет собой гликопротеин с молекулярной массой 660 кВа и необьмно большим числом тирозиновых остатков в полипептидной цепи (около 120). Углеводная часть составляет до 10% от массы тиреоглобулина. Как и все секреторные белки, тиреоглобулин синтезируется на мембран-но-связанных рибосомах, причем гликозилирование полипептидной цепи начинается в цистернах эндоплазматического ретикулума, а завершается в аппарате Гольджи. Тиреоидные гормоны являются единственной группой гормонов, для функционирования которьгх необходим микроэлемент иод. [c.151]

    Использование вторичных посредников и ферментных каскадов позволяет в огромной степени усиливать реакцию на внеклеточные сигналы [28] [c.378]


    Несмотря на большое число исследований, чисто химический аспект действия инсулина остается неясным - . Обычно считается, что гормон действует на плазматические мембраны всех тканей, вызывая заметные изменения проницаемости, что поиводит к возрастанию поглощения глюкозы, различных ионов и других веществ. Такого рода изменения проницаемости могут обусловить сильное влияние инсулина на важнейшие процессы биосинтеза имеет место, в частности, повышение синтеза гликогена, липидов и белков. В то же время процессы катаболизма подавляются и активность катаболических ферментов, например глюкозо-6-фосфатазы, снижается. Ключом к пониманию действия инсулина может явиться выяснение вопроса о природе его вторичного посредника , аналогичного по своему действию сАМР. Высказывались предположения, что вторичным посредником для инсулина является сАМР, однако более вероятно, что эту роль выполняет какой-то ион, возможно К+ . [c.505]

    Инозитол обнаружен в составе фосфоглицеролов (производные фосфатидной кислоты), он является компонентом фосфатидилинозитола (см. главу 11). Биологическая роль инозитола, вероятнее всего, связана с обменом фосфоглицеролов и образованием инозитол-1,4,5-трифос-фата-одного из наиболее активных вторичных посредников (мессенджеров) внутриклеточных сигналов (см. главу 11). Инозитол оказывает мощный липотропный эффект, тормозит развитие дистрофии печени у животных, находящихся на безбелковой диете, и у человека при злокачественных новообразованиях. Необходимость инозита как незаменимого пищевого фактора для крыс и мышей и его специфическое липо-тропное действие продемонстрированы довольно убедительно, однако его витаминные свойства для других животных и человека нельзя считать окончательно установленными. [c.242]

    Термин гормон (от греч. hormao—побуждаю) был введен в 1905 г. У. Бейлиссом и Э. Старлингом при изучении открытого ими в 1902 г. гормона секретина, вырабатывающегося в двенадцатиперстной кишке и стимулирующего выработку сока поджелудочной железы и отделение желчи. К настоящему времени открыто более сотни различных веществ, наделенных гормональной активностью, синтезирующихся в железах внутренней секреции и регулирующих процессы обмена веществ. Установлены специфические особенности биологического действия гормонов а) гормоны проявляют свое биологическое действие в ничтожно малых концентрациях (от 10до 10 М) б) гормональный эффект реализуется через белковые рецепторы и внутриклеточные вторичные посредники (мессенджеры) в) не являясь ни ферментами, ни коферментами, гормоны в то же время осуществляют свое действие путем увеличения скорости синтеза ферментов de novo или изменения скорости ферментативного катализа г) действие гормонов в целостном организме определяется в известной степени контролирующим влиянием ЦНС д) железы внутренней секреции и продуцируемые ими гормоны составляют единую систему, тесно связанную при помощи механизмов прямой и обратной связей. [c.249]

    Другой гормон — мелатонин (8.1), секретируемый эпифизом,— регулирует реакцию на свет или альбедо у многих видов, ингибируя процесс потемнения. Адреналин (8.2) и норадреналин (8.3), действующие как нейрогормоны, и тироксин (8.4), действующий как инициатор морфологической диффе-ренцировки, также могут влиять на пигментацию и изменение окраски. В качестве вторичного посредника в механизме действия МСГ и адреналина при изменении окраски у позвоночных, вероятно, участвует сАМР (3, 5 -цпклическпй аденозинмо-нофосфат). Большое значение для функционирования этих гормонов имеют тиоловые группы белков. [c.292]

    Биосинтез. Образование кортикостероидов осуществляется в несколько стадий, причем общим предшественником их является холестерин (гл. 23). Холестерин синтезируется в надпочечниках или же поступает в них из кровяного русла. В цитоплазме клеток происходит этерификация холестерина и его депонирование. Сигнал на синтез кортикостероидов формируется в гипоталамусе и реализуется в синтезе кортиколиберина. Этот гормон, воздействуя на гипофиз, стимулирует образование адренокортикотропного гормона (АКТГ). Последний, взаимодействуя с мембранными рецепторами клеток надпочечников, через систему вторичных посредников активирует эстеразу холестерола при этом освободившийся холестерол транспортируется в митохондрии. Превращение холестерола в прегненолон в митохондриях происходит в результате гидроксилирования и отщепления боковой цепи посредством ферментов дес- [c.157]

    Биологическая роль самого (3-липотропина связана с фосфорилированием и активацией липазы, расщепляющей нейтральные жиры. Механизм действия этого гормона, как и других пептидных гормонов, связан с активацией аденилатциклазы и генерированием вторичных посредников гормонального сигнала. Для осуществления биологического действия р-липотропин контактирует с рецептором на поверхности жировой клетки, индуцирует образование цАМФ и активацию соответствующей протеинкиназы. [c.147]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Однако полное подавление пероксидных процессов вряд ли является целесообразным. Важное биологическое действие супероксида связывают с его регуляторным действием на КО-синтазу — фермент, приводящий к образованию радикала N0, обладающего свойством вторичного посредника (активатора растворимой гуанилатциклазы). Известно, что супероксидный радикал участвует в формировании клеточного иммунитета, способствует высвобождению жирных кислот из мембранных липидов, индуцирует апоптоз — запрограммированную гибель клеток, оказавшихся вредными или просто ненужными для организма. [c.209]

    Регуляция активности ферментов. Вторичные посредники фитогор-мопов. В этом случае реакция на фитогормон проявляется в течение нескольких минут с момента резкого повышения его концентрации. Такие эффекты объясняются изменением активности ферментов, причем общее число молекул того или иного фермента практически не меняется, но их активность возрастает или снижается вследствие взаимодействия с алло-стерическим эффектором, в роли которого может выступать фитогормон или его метаболит, что приводит к изменению сродства фермента к субстрату. Таким образом, быстрые ответные реакции на фитогормон объясняются изменением активности уже существующих в клетке ферментов. [c.335]

    Циклический АМР (циклический аденилат). Вторичный посредник внутри клеток его образование при помощи аденилатциклазы стимулируется некоторыми гормонами. [c.1022]

    Взаимодействие гормона с рецептором. Рецептор состоит из трех компонентов 1) функциональные группы молекул, которые на поверхности плазматической мембраны клетки обеспечивают взаимодействие гормона с рецептором 2) связующие М- или С-белки. Они могут усиливать передачу гормонального сигнала (№ ) или ослаблять ее (М). Для функционирования этих белков необходима ГТФ 3) фермент катализирующий образование в цитоплазме вторичного посредника для данного гормона (аденилатциклаза — цАМФ, гуанилатциклаза -— цГМФ, фосфолипаза С — инози-толтрифосфат и диацилглицерол и др.). Во время передачи гормонального сигнала происходит сборка рецептора и усиление сигнала. Передача гормонального сигнала-возможна и без ГТФ, но он во много раз слабее. [c.378]

    Продукты превращения фосфоинозитидов. Схема регуляции следующая гормон связывается с рецептором, что приводит к активации фосфолипазы С. Этот фермент катализирует расщепление мембранного фосфатидилинозитол-4,5-бисфосфата на два вторичных посредника — 1Рз и диацилглицерол. 1Р3 усиливает поступление Са в цитозоль, обеспечивая его регуляторные эффекты. Диацилглицерол активирует фосфолипидзависимую протеинкиназу С. Конечным эффектом обоих посредников будет фосфорилирование белков. [c.380]

    При связывании инсулина с рецептором происходит следующее повышается трансмембранный перенос в клетку глюкозы, аминокислот, катионов, жирных кислот изменяется конформация комплекса инсулин — рецептор , и этот комплекс проникает внутрь клетки (интернализация) генерация одного или нескольких сигналов в виде вторичных посредников, в качестве которых может выступать и сам инсулин, а также ионы кальция, циклические нуклеотиды, перекись водорода, отщепленные от мембраны пептиды, продукты метаболизма фосфатидилинозитолов, моновалентные катионы, тирозинкиназа. [c.390]

    В отличие от более прямых сигнальных систем, таких как системы стероидных гормонов, каталитические каскады внутриклеточных посредников предоставляют много возможностей для усиления и регулирования ответов на внеклеточные сигналы. Из рис. 12-33 видно, что, например, когда внешний лиганд активирует аденилатциклазу опосредованно, связываясь с рецептором, одна молекула рецептора может активировать много молекул s-белка, каждая из которых способна активировать молекулу циклазы. В свою очередь каждая молекула аденилатциклазы превращает множество молекул АТР в сАМР Такого же рода усиление происходит и в инозитолфосфо липидном пути В результате нано молярные (10 М) концентрации внеклеточного лиганда нередко вызывают образование вторичных посредников, таких как сАМР [c.378]

    Передача сигнала через ряд посредников предполагает следующую схему реализации процесса 1) взаимодействие рецептора со стимулом 2) активация находящейся в мембране эффекторной молекулы, ответственной за генерацию вторичных посредников 3) образование вторичных посредников 4) активация посредниками белков-мишений, в первую очередь протеинкиназ, вызывающих генерацию следующих посредников или активацию специализированных клеточных элементов, приводящих к физиологическому ответу 5) исчезновение посредника. [c.3]


Смотреть страницы где упоминается термин Вторичный посредник: [c.553]    [c.151]    [c.96]    [c.314]    [c.148]    [c.794]    [c.805]    [c.383]    [c.9]   
Основы биохимии (1999) -- [ c.384 , c.446 , c.456 , c.473 , c.474 , c.475 ]




ПОИСК







© 2025 chem21.info Реклама на сайте