Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Приемник

    В фотоэлектроколориметрах и спектрофотометрах в качестве приемника потока излучений служит фотоэлемент. [c.470]

    Гамма-спектроскопия основана на эффекте резонансного поглощения атомными ядрами 7-квантов (эффект Мессбауэра). При радиоактивном распаде ядер образуются изотопы в возбужденном состоянии. Их переход в основное состояние сопровождается 7-излучением. Невозбужденные атомные ядра в свою очередь могут поглощать 7-кванты и переходить в возбужденное состояние. Однако это явление возможно лишь в строго определенных условиях. Например, 7-излучение возбужденных ядер Ре одной металлической пластинки может поглощать невозбужденные ядра Ре другой пластинки. Если же источник и приемник 7-лучей находятся в разных соединениях (например, источник Те в металле, а поглотитель — в кристалле РеСЬ), то поглощение 7-лучей наблюдаться не будет. [c.148]


    Выходящие из реактора газы содержат летучие, частично сильно кислые компоненты, которые в приемниках после конденсаторов разделяются на два слоя маслянистый и водный. Эту часть установки изготовляют преимущественно из стали V2A. Выходящие из сепараторов газы все еще содержат летучие вещества, которые отмывают в скруббере, орошаемом водой, циркулирующей в системе. В этой воде накапливается масло, вследствие чего ее надо время от времени заменять свежей. [c.456]

    За реакционной печью следует холодильник 7. При помощи редуктора Н5 регулируют скорость пропускания реакционной жидкости через печь для нитрования. После спуска давления конечный продукт реакции проходит снова через холодильник 8 в приемник 9, тогда как выделившиеся при приведении к нормальному давлению газы проходят в ловушку глубокого охлаждения 10, где сжижаются остатки конденсируемых продуктов. [c.310]

    Приемниками излучений служат два сурьмяно-цезиевых фотоэлемента. В качестве источников излучений в приборе используют [c.473]

    Сырой хлористый этил из колонны II поршневым насосом перекачивается в колонну III, где вторично ректифицируется под давлением 3 ат. Головной погон из колонны III также поступает в сборник 21, а остаток направляется в приемник 22. [c.175]

    Содержание воды в масле определяют для свежих масел качественной пробой (методом потрескивания или вспенивания), а для отработанных масел количественным методом по ГОСТ 2477—44 100 мл масла смешивают со 100 мл лигроина. Смесь нагревают в металлической колбе. Испарившиеся частицы воды, сконденсировавшись в холодильнике, собираются в стеклянном приемнике. [c.169]

    Последующее хлорирование проводят в жидкой фазе, при обычной температуре в заполненно м кольцами Рашига чугунном реакторе 26 под давлением 3 ат. Для реакции подается лишь такое количество хлор-газа, чтобы не было заметного избытка его. При таком режиме достигается количественное насыщение двойных связей. Продукты дополнительного хлорирования возвращаются в колонну III, откуда высококипящие компоненты вместе с дихлоридами поступают в приемник 22. [c.175]

    Нижний слой состоит из воды и амилового спирта. Он поступает в сборник, в котором собирают воды со всех стадий процесса, направляемые на дальнейшую переработку. Верхний слой, представляющий смесь 20% амилового спирта и 80% хлористых амилов, снова возвращают на омыление. Остаток из второй колонны 9 поступает в третью колонну 10, дистиллят из которой представляет азеотропную смесь амилового спирта с водой. В приемнике этот дистиллят разделяется на два слоя. Спирт возвращается в колонну 8, а вода направляется в сборник. Остаток из третьей колонны 10, представляющий собой смесь безводных [c.221]


    Из регенеративных кристаллизаторов раствор сырья далее поступает через аммиачные кристаллизаторы КР-7 —КР-9, где за сче г испарения хладоагента охлаждается до температуры фильтро — вания, в приемник Е-1Ю, откуда самотеком на барабанные вакуумные фильтры I ступени Ф-1. В приемник Е-1 поступает также охлажденный фильтрат II ступени, подаваемый из Е-2а насосом Н-19 через аммиачный кристаллизатор КР-10. [c.261]

    Бензин, освобожденный от н-алканов, собирали в приемник и ловушку, охлаждаемые жидким азотом. [c.201]

    Пожалуй, наиболее неожиданное объяснение работы мозга-приемника дал Вяч. Вс. Иванов  [c.33]

    Трубка нагревалась в электропечи. Приемник и ловушка охлаждались сухим льдом со спиртом. [c.183]

    Депарафинизированный бензин собирали в приемник и ловушку, охлаждаемые жидким азотом. После окончания процесса адсорбции депарафинизированный бензин, находящийся на поверхности адсорбента, удалялся при 120° в токе азота. Схема установки дана на рисунке. Десорбцию н-алканов проводили при 340—350°С и давлении 5 мм рт. ст. с помощью азота. Образование кокса не имело места. [c.193]

    Они ЯВЛЯЮТСЯ вторым источником получения газообразных парафиновых углеводородов в процессе гидрогенизации углей. Особо следует отметить, что богатые газы жидкофазноГ ступени содержат весьма большое количество сероводорода. Это можно объяснить тем, что практически вся сера, содержащаяся в буром угле в виде органических сернистых соединений, подвергается гидрированию. Наряду с сероводородом в газах содержатся также небольшие количества сероокиси углерода OS и меркаптанов. Помимо газов иэ приемника продуктов угольного блока (источник 3 на схеме не обозначен), богатый газ образуется также при последующей дистилляции угольного гидрюра (источник 4). [c.37]

    Это объясняется тем, что энергия ядерных переходов зависит от распределения электронной плотности вокруг ядра, т. е. в зависимости от вида соединения для возбуждения ядерных переходов требуются различные энергии. Однако поскольку влияние природы химического окружения атома на смещение ядерных энергетических уровней сравнительно мало, можно добиться резонансного поглощения 7-квантов, несколько изменив их энергию. Для этого достаточно перемещать источник (или поглотитель) 7-излучения относительно приемника (источника) излучения. В этом случае энергия [c.148]

    Пары пропана высокого давления из испарителей Э-1, Э-1а, Э-16 и Э-2 поступают после охлаждения и конденсации в конденсаторах-холодильниках в приемник жидкого пропана Е-1. Туда же поступают после сжатия компрессором потоки пропана низкого давления. [c.233]

    Смесь ди- и полихлоридов, представляющая собой остаток, получаемый в колонке 23, поступает в ректификационную колонку 25, низкокипящие дихлорпропаны отгоняются, образуя головной погон, а наиболее высококинящий из всех изомерных дихлорпропанов 1,3-дихлорпро-пан (триметиленхлорид) вместе с трихлоридами образует остаток перегонки. Дистиллят собирается в сборник 29. Остаток перегоняется в колонке 26-, в качестве головного погона отгоняется 1,3-дихлорпропан, который собирается в приемнике 31. Остаток иэ колонки 26, состоящий из.трихлорпропанов, поступает в сборник 30. [c.163]

    Этилен, содержащий 0,05—0,1% кислорода, забирается компрессором 1, сжимается до 300 ат и подается в работающий под давлением приемник 2, откуда газ поступает в компрессор 3, где давление газа доводится до 1500 ат. Из приемника высокого давления 4 этилено-кислородная смесь через предохранительную трубку 5 поступает в полимеризациопную установку 6. Полимеризационный змеевик омывается горячей водой и таким образом температура поддерживается на требуемом уровне. В первой трубке полимеризация начинается при температуре 200—220°, из последнего сектора змеевика продукт полимеризации выходит с температурой 130°. Продукты полимеризации поступают далее через расширительный вентиль 7 в разделитель высокого давления 8, в котором поддерживается давление 200 ат и температура 130°, так что продукты реакции остаются жидкими. [c.223]

    Амиламины получают взаимодействием продуктов хлорирования пентана с аммиаком в спиртовом растворе. Схема промышленной установки представлена на рис. 49. Раствор аммиака в спирте перекачивается насосом из аммиачного абсорбера 1 в приемник 2. Смесь хлорамилов из бака 3 вместе со спиртовым аммиаком поступает в бак 4, оттуда направляется в автоклавы 5. После добавки свежего аммиака из баллона 6 и перемешивания при 160—165° в течение 2 час. температура в автоклаве настолько повышается, что давление возрастает при.мерно до 30 ат. Реакция завершается приблизительно за 2 часа. Реакционную смесь переводят затем в куб 7, где при небольшом избыточном давлении отгоняется аммиак, который снова абсорбируется в абсорбере 1 спиртом. Этот абсорбер состоит из трех последовательно соединенных колонн, через которые циркулирует спирт, охлаждаемый в выносном [c.227]

    I и 2—расходомеры 3, 4 5 — промывалки 6—манометр 7 — реактор из стекла пайрекс 8 и 9—хо-лодильники 10—приемник для продуктов хлорирования 11 — ректификационная колонка с кольцами Рашига /2 —термометр 13 — дефлегматор (охлаждение твердой углекислотой) 14 — колонка водной промывки 15—колонка, орошаемая иодистым калием 16 — колонка щелочной промывки 17—кварцевая труба 18 — пець 19—колонка щелочной промывки. [c.159]

    Нефть центробежным насосом 5 подается под давлением через три теплообменника 4, грязеотделитель 10 и мазутные теплообменники II и, нагретая до 170—175°, поступает в трубчатую псчь 1. Нагретая в печи до 330 и частично испарившаяся, нефть поступает в рект фикационную колонну 2, снабженную выносными отпарными секциями 3. С верха колонны отбирают бензиновую фракцию, а с боковых отпарных секций — лигроиновую, керосиновую и газой-левую. Пары бензина конденсируются и охлаждаются в теплообменнике и холодильнике 6. Проходя через газосепаратор 7, бензин тюступает в приемник 8, откуда часть бензина насосом 9 отбирается для орошения колонны. Остальные фракции, проходя теплообменники и холодильники, направляются в приемники. Мазут с низа колонны прокачивается насосом /2 через теплообменники 11 и холодильник в приемники. Существует различное конструктивное оформление установок прямой перегонки. [c.6]


    I — реактор 2 — полача газообразного углеводорода 3 — колонна для кондеггсацин спирта, возвращаемого в реактор 4—холодильник 5 — в приемники продуктов б — расходный бак бутилового спирта. [c.194]

    Из циркулирующей в системе реакционной массы все время отбирают определенную часть во флорентийский сосуд 7, в котором отстаивается мепазин, возвращаемый затем снова в реакционную колонну 1. Нижний слой стекает через подогреватель 8 в обогреваемый флорентийский сосуд 9, где отделяются сульфоновые кислоты от серной. Последнюю, которая имеет концентрацию 22%, спускают, а верхний слой, состоящий из сульфоновых кислот, некоторого количества серной кислоты и мепазина, нейтрализуют в аппарате 10 раствором едкого натра из емкости 11. Нейтрализованный раствор прокачивают насосо.м 12 через змеевиковый испаритель 13, где он нагревается до более высокой температуры. После этого раствор через дроссельный вентиль вводят в приемник, находящийся под пониженным давлением. Гидротропно удерживаемый в растворе мепазин отгоняется с выделяющимися парами, а расплавленный сульфонат собирают в приемники 14 и 15, работающие попеременно. Мепазин и вода разделяются в флорентийском сосуде 17 и собираются в приемники 18 и 19 или 20 и 21, работаюнгие попеременно (см. также переработку мерзолята, стр. 416). [c.491]

    При барботировании кислородом смеси 1 л жидкого бутана и 250 мл треххлористого фосфора при —5° легко получают дихлорид н-бутилфосфиновой кислоты заданную температуру лоддерживают охлаждающей смесью. Продукты реакции обрабатывают очень просто. Не вступивший в реакцию бутан испаряют и конденсируют в приемнике для следующего опыта. Остаток сначала освобождают отгонкой от треххлористого фосфора и затем перегоняют в вакууме. Смесь дихлоридов изомерных бутилфосфиновых кислот кипит при 68—70° (3,5 мм рт. ст.). Выход составляет 45% от теоретического, считая на прореагировавший треххлористый фосфор. [c.502]

    В методах отгонки определяемую составную часть исследуемого объекта отгоняют. Методы отгонки могут быть прямыми и косвенными. Примером прямого метода может служить метод определения двуокиси углерода в карбонатных породах. Из навески карбоната (например, СаСОз) действием соляной кислоты выделяют двуокись углерода, которую отгоняют в предварительно взвешенный приемник с поглотителем (в данном случае с натронной известью, т. е. смесью СаО с NaOH). По увеличению массы приемника рассчитывают количество СО2. В косвенных методах отгонки летучий компонент отгоняют из навески исследуемого вещества и по уменьшению ее массы судят о содержании летучего компонента. Так можно определять количество кристаллизационной воды в солях, высушивая навеску соли при определенной температуре. [c.65]

    Авторы подавляющего большинства тех (относительно немногочисленных) произведений, которые определяют вершины человеческой культуры, склонны были, не преувеличивая своих личных заслуг, связывать возникновение этих текстов с такой одномоментной переработкой (или приемом) больших массивов информации. Поэтому остается неизвестным, действительно ли правы те специалисты по космической связи, которые предполагают, что приемники на Земле никак не реагируют на сверхкороткие импульсы, которые, возможно, посылают обогнавшие нас в своем развитии разумные существа. По альтернативной гипотезе, такие импульсы оставили существенный след в истории человеческой культуры. На этом пути можно искать и естественнонаучный подход к понятию гениальности . [c.33]

    После выделения ожидаемой нафтено-парафиновой части и половины фракции 24—60°С, приемник заменялся. Появ-98 [c.98]

    Для проверки активности катализатора через трубку при 300—305° был пропущен циклогексан в слабом токе водорода процент дегидрогенизации циклогексана определялся рефрактометрически по Г. С. Павлову [22]. Катализатор 90% циклогексана переводил в бензол. Над этим катализатором фопускался деаромат зированный бензин при 300 305° со скоростью 6 мл/час в слабом токе водорода приемник охлаждался твердой углекислотой со спиртом. Полнота дегидрогенизации контролировалась измерением показателя лучепреломления катализатов. После завершения дегидрогенизации каждой фракции активность катализатора проверялась, и она оставалась неизменной. [c.133]

    НОМ древесном угле (22% Р1). Катализатор готовили по методу Н, Д. Зелинского и М. Б. Туровой-Поляк [13]. Активность катализатора определялась дегидрированием циклогексана по Г. С. Павлову [14]. Катализатор 95% циклогексана превращал в бензол. Над указанным катализатором деаро--матизированный бензин пропускали при 300—305°С, со скоростью 6 илЫас в слабом токе водорода. Приемник охлаж- [c.143]

    Над этим катализатором в слабом токе водорода пропускались деароматизированные фракции сацхенисской нефти с объемной скоростью 0,05. Приемник охлаждался льдом, а ловушка — твердой углекислотой. Полное дегидрирование гидроароматических углеводородов контролировалось определением показателя лучепреломления катализатов. Дегидрирование проводили до постоянной величины показателя лучепреломления катализата, после чего проверялась активность катализатора она оставалась почти неизменной. [c.179]

    Рнс. I. Схема установки для получения депарафинизирован-ного бензина. 1—капельная воронка, 2—трубка с адсорбентом, 3—электропечь, 4—холо-ди-1ьник, 5—приемник, 6—ловушка, 7—манометр, 8—термопара, 9—вакуум-насос [c.194]

    При исследовании молекулярных спектров- поглощения (рис. 90) лу1 света направляется в монохроматор 2 (призма или дифракционная решетка) для разложения в спектр. Пучки монохроматического излучения соответствующей длины ьолны далее пропускаются параллельно через пустую (или заполненную растворителем) кювету 4 и через кювету 3, наполненную исследуемым веществом (или его раствором в том же растворителе). Оба пучка попадают в приемник [c.144]


Смотреть страницы где упоминается термин Приемник: [c.32]    [c.32]    [c.111]    [c.186]    [c.221]    [c.279]    [c.290]    [c.291]    [c.491]    [c.21]    [c.21]    [c.58]    [c.470]    [c.475]    [c.259]    [c.94]    [c.144]    [c.234]   
Смотреть главы в:

Субмикрометоды анализа органических веществ -> Приемник


Руководство по лабораторной ректификации 1960 (1960) -- [ c.422 , c.428 ]

Техника лабораторной работы в органической химии (1952) -- [ c.0 ]

Очерк общей истории химии (1969) -- [ c.352 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.119 , c.126 ]

Оборудование для заводов химической промышленности (1952) -- [ c.12 ]




ПОИСК





Смотрите так же термины и статьи:

Активная реакция, стабильность, бактериальные загрязнения сточных Водоем как приемник сточных вод

Брюля приемник

Вакуум-перегонка приемники

Водоемы — приемники сточных вод

Времяимпульсный приемник телеизмерения МПА

Выбор скорости развертки магнитного поля и постоянной времени приемника

Галея приемник

Германиевый приемник

Грушевидная колба-приемник

Диапазоны пропускания оптических окошек, источников и приемников (в области 10— 1 ООО мкм)

Другие приемники для инфракрасной спектроскопии

Емкости приемники

Зависимость величины предела обнаружения спектральной линии от параметров приемника излучения и способов регистрации спектров

Зависимость относительной интенсивности линий от поглощения рентгеновских лучей на пути от антикатода к приемнику

Изотермические сферические приемники сжиженного хлора

Испытания фотоэлектрических приемников

Источники излучения, приемники радиации, оптиче- j ские материалы, диспергирующие элементы

Источники излучения. Б. Спектрографы. В. Приемники. Г. Стандарты длин волн Атомная спектроскопия

Источники энергии, требования к устройствам электроснабжеНагрузка приемников электроэнергии, расчет нагрузок

Когерентный приемник

Конденсационный приемник

Конструкция клапанов для приемников хлора

Конструкция приемника ионов для легких масс

Краны для вакуумных приемников

Кремниевый приемник

Кубы, приемники и сборники фракций дистиллата

Линстеда приемник

Магнит, применение для смены приемников

Меры безопасности при наполнении и опорожнении приемников хлора

Микроперегонка с водяным паром приемник

Напряжение номинальное приемников электроэнергии

Неодинаковые изменения сравниваемых потоков и чувствительностей приемника

Неселективные тепловые приемники излучения

Носители приемники

ОСНОВНОЕ ТЕХНОЛОГИЧЕСКОЕ ОБОРУДОВАНИЕ Емкости (приемники) и резервуары для хранения нефтепродуктов

Обеспечение условий безопасности при наполнении и опорожнении приемников хлора

Определение и классификация приемников ИК-излучения

Оптико-акустические и пневматические приемники

Оптическая система приемника в дистанционном

Оптической системы приемника спектральная полоса пропускания

Оптической системы приемника эффективная апертура

Оптической системы приемника эффективность пропускания

Отражение от излучателя и приемника

Охладители приемников инфракрасного излучения

Охлаждаемый приемник

Охрана от загрязнений водоемов — приемников сточных вод

Перкина приемник

Плита в качестве приемника энергии волн

Подбор входного сопротивления усилителя и нагрузки приемника

Постоянная времени приемника

Предохранительные устройства для приемников хлора

Приборы для измерения света и физические приемники излучения

Приемник Паук

Приемник для вакуумной перегонки

Приемник для работы в вакууме

Приемник для работы в вакууме по Арбузову

Приемник для улавливания фракций

Приемник для фильтрования

Приемник для фильтрования в вакууме

Приемник и закрепление

Приемник микроперегонки с паром

Приемник определение понятия

Приемник смена с помощью магнит

Приемники акустических колебаний

Приемники дистиллята

Приемники для высокого и среднего вакуума

Приемники для давлений выше

Приемники для улавливания регенерируемых и нерегенерируемых дымов

Приемники для фильтрация

Приемники закрытые

Приемники и преобразователи инфракрасного излучения

Приемники и сборники фракций дистиллата

Приемники и сборники фракций дистиллята

Приемники излучения

Приемники излучения и оптика приемников

Приемники инфракрасного излучения

Приемники инфракрасные

Приемники лучистой энергии

Приемники оптического излучения

Приемники пневматические

Приемники радиации

Приемники рентгеновского излучения

Приемники с внутренним фотоэффектом

Приемники света, усилители и измерительные приборы

Приемники тепловые

Приемники фотосопротивления

Приемники, разгрузители и пылеуловители материала

Приемники, усилители, регистрирующие устройства

Приемники-ловушки

Приемники-маслоотделители

Пропускная способность тепловых приемников излучения

Пустотелые аппараты Приемники для воздуха, газов и жидкостей

Сборники, приемники, баки и хранилища

Света приемники

Сельсины датчик и приемник

Скважность приемника

Современные инфракрасные приемники, Т. С. Мосс

Спектральная чувствительность приемника радиации

Счетчик Гейгера как приемник

Типы и устройство приемников хлора

Типы приемников излучения

Типы приемников. Основные свойства (10 5). Фотоэлементы

Усилители сигналов, снимаемых с приемников излучения

Устройство приемников. Системы охлаждения

Фильтрат приемники

Фотоэлектрические приемники

Фотоэлектрические приемники. Обычные способы регистрации (стр. 61). 2.2.2. Методы фотоэлектрической регистрации с периодическим сканированием спектра (стр. 63). 2.2.3. Сравнение фотоэлектрической и фотографической регистрации в случае анализа однородных объектов (стр. 67). 2.2.4. Сцинтилляционный фотоэлектрический метод регистрации

Фотоэффект. Основные соотношения. Приемники с внутренним и внешним фотоэффектом

Фрезениуса приемник

Чувствительность приемника

Шнековый приемник

ЭПР скорости развертки магнитного поля и постоянной времени приемника

Электронные схемы приемников излучения

Электронов приемник



© 2025 chem21.info Реклама на сайте