Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутан реакции

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    Основными направлениями распада газообразных алканов (от метана до бутанов) являются реакции дегидрогенизации в случае термического разложения метана, этана, пропана и изобутана, реакции деметанизации при разложении пропана и бутанов, реакции деэтанизации в случае распада бутана. Дегидрогенизация бутана и деэтанизация изобутана при обычном крекинге происходят в незначительных размерах. [c.77]

    Один из методов приготовления 2,2,3-триметилбутана (триптана) заключается в реакции между цинкдиметилом и 2-хлор-2,3-диметил-бутаном [62]. При этом исходили из 3,3-диметилбутанола-2, дегидратацией которого были получены два изомерных олефина  [c.407]

    Изомеризация нормального бутана может быть осуществлена также по схеме, представленной на рис. 13-23. Нормальный бутан поступает в смеситель 1, где смешивается с нижним продуктом из дистилляционной колонны 3, и направляется в изомеризационный реактор 2, где изомеризуется при определенной степени превращения. Продукты реакции поступают в дистилляционную колонну, где разделяются на готовую продукцию (верхний продукт) и возврат (нижний продукт). [c.282]

    При фтористоводородном алкилировании продукты реакции уходят из отстойника в жидкой фазе (рис. 1У-28) [25]. По варианту а жидкая фаза поступает в отпарную изобутановую колонну, из которой боковым погоном в паровой фазе отбирают н-бутан и из куба—алкилат. Изобутан и пропан с верха отпарной колонны поступают на разделение в пропановую колонну. Следы фтористоводородной кислоты отпаривают в отпарной колонне от пропана и рециркулируют вместе с изобутаном в реактор. По варианту б продукты реакции поступают в сложную пропан-изобутановую колонну, с верха которой отбирают пропан, боковым погоном в жид- [c.238]

    Фракция С4 после прохождения бутан-бутеновой смеси через печь содержит 8—12% бутадиена. В этом процессе представляет интерес решение вопроса о подводе тепла, необходимого для эндотермической реакции дегидрирования. Подвод тепла при помощи перегретого водяного пара здесь невозможен, так как устойчивый против действия водяного пара катализатор № 1707 не пригоден для прямого дегидрирования к-бутана в бутадиен и может применяться только в двухступенчатом процессе. [c.87]

    При сернокислотном алкилировании из отстоиника уходят два продуктовых потока в паровой и жидкой фазах. В связи с этим для блока разделения по рис. 1У-27,а принята схема последовательно-параллельного раздешения продуктов реакции паровой продуктовый поток делится на пропан и изобутан, а жидкий продуктовый поток делится в двух последовательно работающих колоннах на рециркулирующий изобутан, н-бутан и алкилат. В более поздней, усовершенствованной схеме по рис. 1У-27, б жидкие продукты реакции разделяются в сложной отпарной колонне, из которой сверху уходит изобутан и боковым погоном в паровой фазе отбирают фракцию н-бутана с низа колонны выводят алкилат. [c.238]


    Образование тиофена из бутана и серы протекает в несколько стадий. Считают, что вначале сера дегидрирует бутан в дивинил, который затем реагирует с серой, замыкая цикл и давая тиофен [38]. При побочных реакциях получаются сероуглерод и продукты с большим содержанием серы. [c.506]

    Так как на смешение с бутановой фракцией водород подается в несжатом виде, то его количество не превышает 2 % мол. на сырье, потому что при данных условиях больший объем газа не растворяется в бутане. Реакции изомеризации потребляют около 1 % мол. водорода, т.е. присутствие водорода по высоте слоя катализатора обеспечено. Сырье с растворенным в нем водородом направляется насосом в осушители, нагревается в теплообменнике продуктами реакции и подается в реактор. Продукты реакции после теплообменника поступают в стабилизатор, сверху которого отделяется газ в топливную систему, а снизу выходит изобутановая фракция [3-5]. [c.74]

    Реакция протекает в полной темноте и не требует присутствия веществ, являющихся источником свободных радикалов. Инкубационный период отсутствует, и, например, для этана реакция проходит гладко уже при —80°. Скорость реакции настолько велика, что при хорошем контакте жидкости с кислородом она зависит только от быстроты его Подач и. Про-пан, бутан и мепазин реагируют легко алициклические углеводороды также вступают в эту реакцию. Ароматические углеводороды инертны, но их примеси к парафиновым углеводородам не тормозят процесса. [c.502]

    Серу и н-бутан, взятые в весовом отношении 1 1, нагревают порознь до 570° и пропускают через змеевик, температуру которого поддерживают на том же уровне. Время пребывания в реакционной зоне составляет 2 сек., после чего -продукты реакции быстро охлаждают до 80°, впрыскивая в них жидкую воду. Вслед за этим температуру газа снижают до обычной И его компримируют до 12 ат. Выходящая из реакционной печи газовая смесь имеет следующий состав (в % вес)  [c.506]

    Правда, для н-гептана чистая реакция изомеризации протекает в очень малой степени в первую очередь наблюдается крекинг с образованием продуктов меньшего молекулярного веса [2]. При изомеризации н-пентана получают уже значительно лучшие выходы, тогда как н-бутан может быть переведен в изобутан практически без потерь при крекинге. [c.513]

    Высушенный н-бутан испаряют и подают в верхнюю часть реактора, где он смешивается с хлористым водородом смесь проходит сверху вниз через слой катализатора (хлористый алюминий, нанесенный на боксит). Газовый поток (углеводород+хлористый водород) увлекает с собой часть хлористого алюминия. При последующем прохождении продуктов реакции через камеру, наполненную чистым бокситом, хлористый алюминий улавливается. Продукт затем конденсируют и в виде жидкости 1  [c.523]

    Определите отсюда порядок реакции по бутану при данной температуре. Какими общими свойствами обладают реакции этого порядка  [c.101]

    Конпентрапия кислоты. Для С — алкилирования бутан — бути — леновых углеводородов обычно используют серную кислоту, содержащую от 88 до 98 % моногидрата. Снижение ее концентрации в процессе работы происходит за счет накопления высокомолекулярных полимерных соединений и воды, попадающей в систему вместе с сырьем. Если концентрация кислоты становится ниже 88 %, усиливаются побочные реакции, приводящие к ухудшению качества алкилата (рис.8.12). [c.143]

    Согласно этой схеме включений, нормальный бутан поступает в каталитический конвертор (реактор) 2 и там изомеризуется при определенной степени превращения. Продукты реакции поступают в дистилляционную колонну 2, где разделяются на верхний продукт, состоящий из изобутана требуемой чистоты, и нижний — нормальный бутан, который изомеризуется в каталитическом конверторе [c.282]

    Адсорбцию и дейтерообмен метана и этана, реакции гидрогенолиза этана, гидрогенолиза и изомеризации бутанов и некоторых углеводородов состава Сг исследовали также в присутствии черней Ки, КН и 1г [43]. Более высокую каталитическую активность Ки, КЬ и 1г в реакции гидрогенолиза по сравнению с активностью Р(1, Р1, Со или N1 объясняли легкостью образования прочно связанных (многоцентровая адсорбция) поверхностных частиц, ответственных за гидрогенолиз. Предполагается, что начальная стадия быстрого многократного разрыва С—С-связей молекулы углеводорода сопровождается медленной десорбцией продуктов реакции, которая, по-видимому, и является лимитирующей стадией гидрогенолиза на Ки-, КЬ- и 1г-катализаторах. [c.96]

    В комплексе I связь атома С-3 с Р1 а.а -хемосорбционная, а в комплексе II атом С-3 находится в состоянии 5р -гибридизации. При этом л-система включает электроны, принадлежащие как атомам С-2 и С-3, так и атому Р1. Реакция облегчается частичным переносом электронной плотности с адсорбированного радикала на металл протеканию процесса способствует также гиперконъюгация за счет СНз-групп. Последнее подтверждается экспериментом реакционная способность уменьшается в ряду неопентан > изобу-таи > к-бутан [21, 34, 59, 61]. [c.98]


    А И А — алканы О и О — алкены М и К — соответственно металлические и кислотные участки катализатора) были исследованы превращения изомерных бутанов, в том числе н-бутанов, меченных в метильной и метиленовой группах, пентанов, гексанов. Опыты проводили в атмосфере водорода над (1—2% Р1)/(5Ю2—АЬОз) при 300 °С. Исследование кинетики взаимных превращений различных изомерных алканов состава С4—Се позволило определить эффективные константы скорости взаимопревращений каждой пары (скорость превращения н-гексана в 2-метилпентан принята за стандарт, при этом соответствующая константа скорости равна 10). Поскольку все реакции обратимы, то равновесие в каждой стадии [c.205]

    Поведение к-бутана и изобутана аналогично реакциям пропана в том смысле, что они слишком быстро дают вторичные и третичные продукты реакции, чтобы можно было изучать начальную стадию разложения. Это имеет место при всех температурах свыше 1000° С, т. е. в тех случаях, когда ацетилен является основным продуктом. Отношение К/К для реакций образования ацетилена из пропилена или этилена примерно то же, что и при пиролизе пропана это указывает на то, что природа исходного реагента не имеет особенно большого влияния на скорость образования ацетилена, если исходный реагент является углеводородом, содержащим 3 или более атома углерода. В связи с этим получение ацетилена пз пропана и бутанов будет рассматриваться скорее с точки зрения выхода ацетилена, чем расхода исходного сырья. [c.63]

    Ввиду того, что выходы в этих реакциях низкие, многие исследователи избегали их применения. Однако выходы алкилбензолов часто были не столь низкими, как можно было ожргдать на основании возможности одновременного образования трех продуктов конденсации, а также и другие побочных продуктов. Получение больших количеств алкилбензолов может быть объяснено тем, что реакция, вероятно, протекает с промежуточным образованием фенилнатрия, который легко реагирует е алифатическим галогенидом и труднее с ароматическим галогенидом. Все же реакция Вюрца-Фиттига может быть рекомендована для получения чистого алкилбензола, так как побочные продукты обычно легко отделяются. Например, при реакции бромистого этила и бромбензола образуются 7 -бутан и дифенил в качестве побочных продуктов, оба они очень легко отделяются от этилбензола перегонкой. Этот метод дает лучшие выходы при приготовлении к-алкилбензолов. В большом масштабе 151 реакция Вюрца-Фиттига была применена прп приготовлении н-де- [c.486]

    Необходимо отметить, что основным напршлением реакций гидрокрекинга является превращение н-гексана в пропан и бутан, реакция с образованием метана практически не имеет места. [c.29]

    При взаимодействии образовавшегося хлорэта-на с натрием выделяется газообразный бутан (реакция Вюрца)  [c.225]

    Тиофенол при контакте с катализатором распадается полностью за 2 мин при температуре 200° С и давлении водорода 200 в то время как для гидрирования СЗ2 в течение такого же времени требуется уже температура 250° С, а для тиофена — 300° С. Авторы считают, что гидрирование тиофенола проходит в одну ступень, в то время как тиофен должен прогидрироваться до тетрагидротиофена, бутилмеркантана, и только от последнего, наконец, отщепляется атом серы в виде сероводорода и образуется бутан. Реакция гидриро- [c.384]

    При реакции образуются свободные радпкалы, к-рые алкплпруют свинец. Одновременно происходит дпспро-порционированпе и сдваиванье радикалов поэтому побочно образуются этплен, этан п бутан. Реакцию проводят в атмосфере азота. Т. разлагается па свету, выделяя свинец. Прп действии сильных минеральных к-т отщепляет один или два радикала  [c.62]

    Из табл. 2 видно, что при отсутствии олефина в чистом бутане реакции изомеризации при описанных выше условиях не происходит. Прибавление 1 части олефина на 10 ООО частей бутана достаточно, чтобы вызвать реакцию изомеризации. Когда концентрация олефинов в н-бутане увеличивается до 2,43 /о или больше, то заметно возрастает количество побочных реакций, на что указывает образование пропана и вышекипящих углеводородов, которые могут получаться от взаимодействия образующегося изобутана с вводимым олефином [8, 9]. Следует указать, что в присутствии вводимых олефинов катализатор обра- [c.48]

    Удельное значение протекающих одновременно реакций крекинга а дегидрирования зависит в первую очередь от числа атомов С в исходном материале. В то время как этан при высоком нагреве превращается практик чески только в этилен и водород и, следовательно, здесь в основном идет реакция термического дегидрирования, при нагреве пропана уже большее значение имеет реакция крекинга с образованием этилена и метана. При нагреве бутана до высокой температуры образуется совсем немного бутена. Бутан расщепляется главным образом на этилен и этан или, соответственно на пронен и метан. Изобутан, напротив, примерно на 50% превращается в изобутен. [c.47]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    По окончании реакции верхний слой, содержапщй пропан, бутан и продукты полимеризации, отделяется. Сернокислотный слой, содержащий алкилсульфаты, настолько разбавляется водой, чтобы в результате образовалась 30%-ная серная кислота. Гпдролпз и выделение спиртов производятся непрерывным способом. Ректификацией на ряде колонн из конденсата выделяют изопропиловый и втор-бутиловый спирты и соответствующие эфиры. [c.204]

    Другую промышленную устаио вку по окислению газообразных углеводородов построила фирма Силениз кемикал корпорейшн в г. Бишоп (штат Тексас). Процесс ведут при 60 ат, окисляя в присутствии водяного пара чистые пропан или бутан воздухом, взятым в недостатке, по методу, описанному в одном из американских патентов [10]. При этом используют большие избытки углеводорода и разбавителя (водяного пара) и малые продолжительности пребывания газов в зоне реакции. Если смесь из 1 весовой части бутана, 5 весовых частей воздуха и 34 весовых частей водяного пара пропускать при 20—30 ат через реак- [c.436]

    Продукт реакции фильтруют в горячем состоянии, катализатор в особой установке промывают ксилолом и затем регенерируют. Горячий ксилольный раствор полиэтилена охлаждают до 25—60 и выделяющийся в осадке полимер отделяют фильтрованием. Для дальнейшего выделения полиэтилена к фильтрату добавляют л идкий пропан, бутан или спирт. Затем от фильтрата перегонкой отделяют ксилол, возвращающийся на иолимеризациоппую установку. В остатке остаются низшие полимеры этилена и алкилированпый ксилол. Полиэтилен освобождается от остатков растворителя. Превращение взятого для полимеризации этилена составляет около 98%. [c.224]

    При ультрафиолетовом облучении смесей парафина с двуокисью серы образуются сульфиновые кислоты (см. стр. 505). Дэйтон и Айвин [94а], открывшие эту реакцию, показали, что если парафином является пропан или н-бутан, то получается смесь изомеров, причем в случае н-бутана в ней преобладает вторичный продукт замещенйя. Это согласуется с результатами, полученными при хлорировании и сульфохлорировании. Точный состав смеси не был определен. [c.574]

    Замечание к уравнению 1. При температуре нитрования 425° и малом времени реакции (порядка секунды или доли секунды), например, н-бутан по Ф. Фрею и Хзппу [82] распадается только на 0,0002% с образованием радикалов. Таким образом, для образования больших количеств свободных радикалов, чем может образоваться по условиям равновесия, необходимо воздействие других факторов, кроме пиролиза. [c.283]

    Как подробнее изложено в главе Закономерности при реакциях замещения парафиновых углеводородов , при сульфохлорировании пропана оба теоретически возможных пропанмоносульфохлорида, а именно пропан-1- и пропан-2-сульфохлорид, получаются в соотношении 1 1, в то время как при сульфохлорировании н-бутана бутан-1-и бутан-2-сульфохлорид образуются в соотношении 33 67. Следовательно, имеются такие же закономерности замещения, ак и при хлорировании. [c.380]

    В последнее время Терентьев и Гершенович [49] огаять применили эту реакцию для выяснения состава соединений, получаемых при оульфохлорировании и состоящих из 1-хлорбутана и бутан-1-сульфохлорида. [c.388]

    Недавно в США введена в эксплуатацию в г. Пампа (штат Тексас) новая установка для окисления газообразных парафинов [14]. На ней окисляют воз-духом бутан, полученный из природного газа газовых скважин в Хуготоне, под давлением, которое, как предполагают, выше, чем на установке в г. Бишопе. По-видимому, одновременно применяют также катализатор, что позволяет снизить температуру процесса. Основным продуктом является уксусная кислота, но, смотря по желанию, можно также получать пропионовую и масляную кислоты с несколько большими выходами. Разделение и очистка продуктов реакции происходят, как описано выше. Остающийся после масляной абсорбции азот подают в газовые турбины, где он, теряя давление, отдает при этом энергию. Поразительно то, что на новой установке формальдегид не получается [15]. [c.438]

    При барботировании кислородом смеси 1 л жидкого бутана и 250 мл треххлористого фосфора при —5° легко получают дихлорид н-бутилфосфиновой кислоты заданную температуру лоддерживают охлаждающей смесью. Продукты реакции обрабатывают очень просто. Не вступивший в реакцию бутан испаряют и конденсируют в приемнике для следующего опыта. Остаток сначала освобождают отгонкой от треххлористого фосфора и затем перегоняют в вакууме. Смесь дихлоридов изомерных бутилфосфиновых кислот кипит при 68—70° (3,5 мм рт. ст.). Выход составляет 45% от теоретического, считая на прореагировавший треххлористый фосфор. [c.502]

    Хонф н Неницеску нашли [27], что н-бутан, н-пентан, циклогексан и т, п. при О—50° и давлении 100—150 ат образуют с окисью углерода в -присутствии хлористого алюминия кетоны. Эту своеобразную реакцию толковал так, что сначала образуется альдегид, который затем изомеризуется. Действительно, нри обработке триметилуксусного альдегида хлористым алюминием С. Данилов получил метилизонропил-кетон [28]. Следовательно, реакцию между изобутаном и окисью углерода можно представить следующей схемой  [c.504]

    В процессе гидроочистки используют ие чистый водород, а газ, в котором содержится от 50 до 95% (объем) водорода, остальную часть составляют метан, этан, пропан и бутан. В результате реакций гидроочистки водород поглощается, образуются углеводородные газы, сероводород и вода. Расход водорода восполняется подачей его с установок риформинга, с уста-1ЮВ0К производства водорода и других источников. [c.222]

    Однако квантовые выходы были во всех случаях меньше единицы. Лучше всего эта реакция протекает с высшими парафиновыми углеводородами. Третичные атомы водорода реагируют наиболее легко, первичные наиболее трудно. При реакции двуокиси серы с пропаном и н-бутаном установлено образование двух изомерных сульфиновых кислот, причем в случае бутана преимущественно получается сульфи-новая кислота с группой — ЗОаН у вторичного атома углерода. Олефины вступают в эту реакцию гораздо труднее и тормозят превращение насыщенных углеводородов. [c.505]

    В реакторном блоке (секция алкилирования) проходит непосредственно процесс алкилирования. В секции ректи( )икации разделяются продукты реакции и выделяются пропан, изобутан, н-бутан и пентан, который выходит вместе с авиа- и автоалкила-тами. Эта секция состоит из четырех ректификационных колонн пропановой, служащей для отделения пропана от изобутана, изобутановой, в которой отделяются изобутан и пропан от остальных продуктов, бутановой, служащей для отделения н-бутана от алкилата — и колонны для вторичной перегонки, где разделяется смесь алкилатов. [c.60]

    Следовательно, при ректификации продуктов реакции, прежде чем качать собирать изомерные мопопитроалканы с тем же числом углеродных атомов, что н исходный углеводород, придется отогнать большое число нитропарафинов меньшего молекулярного вес а. Продукты нитрования пропана и бутанов еще разделяются тщательной ректификацией, но уже продукты птрования н-пентана и изопентана можно разогнать лишь на узкокипящие (групповые) фракции, так как многие изомеры имеют практически одинаковые температуры кипепия. Состав полученных фракций следует определять химическими методами. [c.568]

    Реакция гидрогенолиза в присутствии металлических катализа торов, как правило, сопровождается скелетной изомеризацией исходных углеводородов. Скелетная изомеризация углеводородов состава Сл— s, проходящая, по-видимому, через промежуточное образование 1,3-диадсорбированного соединения, обсуждается в литературе достаточно широко. Исследованы изомеризация бутанов и неопентана на пленках Pt [16, 21, 59, 60], превращения неопентана на нанесенных Pt-катализаторах и черни [34, 61]. Для изомеризации н-бутана и изобутана постулируются [21] поверхностные [c.97]


Смотреть страницы где упоминается термин Бутан реакции: [c.384]    [c.269]    [c.46]    [c.237]    [c.12]    [c.206]    [c.446]    [c.447]   
Органическая химия (1979) -- [ c.204 , c.359 ]




ПОИСК





Смотрите так же термины и статьи:

Бутан

Бутан Бутан

Бутанал



© 2025 chem21.info Реклама на сайте