Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивность природных газов

    Содержание гелия и радиоактивность природных газов Европы [c.49]

    X л о п и н В. Г. Геохимия благородных газов и радиоактивность. Природные газы, 2. 1931. [c.199]

    Показанные в табл. 5-3 близкие значения коэффициентов линейного термического расширения а, диамагнитной восприимчивости X и анизотропии этих показателей для графитов различных месторождений свидетельствуют о том, что графиты представляют собой плотные беспористые чешуйки. В отдельных случаях в чешуйках могут наблюдаться пустоты (дырки), имеющие форму эллипса. Их происхождение объясняется вы делением газов, в частности гелия, при распаде а-частиц радиоактивных природных элементов, внедренных в чешуйку графита [1-3]. [c.237]


    Гелий получают из некоторых природных газов, в которых он содержится как продукт распада радиоактивных элементов. Он находит применение для создания инертной среды при автогенной сварке металлов, а также в атомной энергетике, где используется его химическая инертность и низкая способность к захвату нейтронов. Гелий широко применяется в физических лабораториях в качестве хладоносителя и при работах по физике низких температур. Он служит также термометрическим веществом в термометрах, работающих в интервале температур от 1 до 80 К. Изотоп гелия jHe — единственное вещество, пригодное для измерения температур ниже 1 К. [c.493]

    Установлено, что естественное радиоактивное зафязнение природного газа, нефти и пластовых вод на месторождении находится на низком уровне, и поэтому не требуется осуществлять мероприятия по обеспечению радиационной безопасности. [c.32]

    Органические соединения в природе образуются в процессе фотосинтеза из диоксида углерода и воды. Этот процесс протекает в зеленых растениях под действием солнечного излучения, поглощаемого хлорофиллом. В результате фотосинтеза возникли и ископаемые источники энергии, и химическое сырье, т. е. уголь, нефть и природный газ. Однако органические соединения должны были существовать на Земле и до возникновения жизни, которая не могла появиться без них. Так как в первичной земной атмосфере присутствовали прежде всего водород и вода, а также оксид углерода, азот, аммиак и метан, а кислорода не было, то еще около 2 млрд. лет назад она имела восстановительный характер и в существовавших условиях (сильное радиоактивное излучение земных минералов и интенсивные атмосферные разряды) в ней могли протекать реакции типа [c.9]

    Иными словами, в 1 м воздуха содержится 9,3 л Аг, 16 мл Ne, 5 мл Не, 1 мл Кг, 0,08 мл Хе и лишь 1—2 атома Rn в 1 см . Гелий, являющийся продуктом радиоактивного распада, встречается в некоторых природных газах, в водах минеральных источников, а также в окклюдированном виде в минерале клевеите. Все эти элементы (кроме аргона) принадлежат к редким. Это обстоятельство, а также их исключительная инертность послужили причиной их сравнительно позднего открытия. В космосе гелий наряду с водородом является наиболее распространенным элементом (76 масс, долей, % Н и 23 масс, доли, % Не от общей массы вещества во Вселенной). Источником космического гелия являются термоядерные реакции, протекающие на определенной стадии эволюции звезд. Не случайно поэтому гелий впервые был открыт (1868) методом спектрального анализа на Солнце. На Земле он был обнаружен спустя почти 30 лет. [c.484]


    На основании этих исследований авторы сочли возможным производить захоронение в грунт асфальтовых блоков, содержащих радиоактивные отходы. Была сооружена опытная установка, на которой радиоактивные отходы смешивались с асфальтом при 200° С. Активный материал тщательно высушивался. После охлаждения получалась гомогенная смесь, практически нерастворимая в обычных природных средах (содержание сухого материала в смеси достигало 50%). Эта установка производительностью по выпариваемой воде 25 л/ч работала в течение 18 месяцев. Радиоактивность сбросных газов после очистки их с помощью электрофильтров составляла 1 10" часть исходной активности. [c.97]

    Не — методом глубокого охлаждения из природных газов Все газы смеси, кроме Не, сжижаются, а Не остается в виде газа, как самое низкокипящее вещество, сжижается только прн повышенном давлении Аг — побочный продукт при синтезе NH3 Rn — радиоактивный распад радия [c.392]

    Хе. Гелий являющийся продуктом а-распада радиоактивных элементов, иногда находится в заметных количествах в природном газе и нефти. В космосе и на солнце — он второй по распространенности после водорода. Аргон получают при ректификации жидкого воздуха и используют для создания инертной атмосферы при выделении и обработке Ве, Т1, Та, и других легко-кипящих и пожароопасных металлов. Аргон применяют также для аргонно-дуговой сварки алюминиевых и магниевых сплавов, титана, нержавеющей стали, которые невозможно сваривать в присутствии кислорода. В последнее время для этой цели используется и гелий. [c.170]

    Защитные газы — это контролируемые газовые среды, используемые в различных производствах (радиоактивных материалов, полупроводников, химически активных металлов и сплавов и др.). Если эти газы используют в противопожарных целях, в них должно быть очень низкое содержание кислорода, а если для хранения пищевых продуктов, допускается присутствие 2—15% Сжиганием природного газа получают защитные экзогаз и эндогаз . Что это такое  [c.180]

    Водород (Н2) — самый легкий газ в природе (легче воздуха в 14 раз), бесцветный, не имеет запаха, плотность по воздуху 0,0695, высшая теплота сгорания 12,2 МДж/м . Водород имеет два стабильных изотопа протий (Ш) и дейтерий (В или Н), и один радиоактивный — тритий доля дейтерия в водороде Земли очень мала. Водород природных газов несколько обогащен дейтерием отношения В Н = 1 4000 (в воде это отношение 1 6800). Водород в природных газах содержится в количестве от тысячных долей до 60%. Повышение его концентрации свойственно вулка- [c.46]

    В роли анализируемых объектов (АО) могут быть газы (чистые газы, газовые смеси, технологические, органические, неорганические и природные газы), жидкости (вода и водные растворы различных веществ, органические жидкости, электролиты), твердые вещества (металлы, сплавы, минералы, полупроводниковые, диэлектрические, органические материалы). Определяемыми компонентами могут быть газовые примеси в газовых смесях, чистых газах газовые включения в жидких и твердых веществах газообразующие примеси (элементы) в газах, жидкостях и твердых веществах аэрозольные и радиоактивные вещества и частицы в газах. [c.891]

    Во всех природных газах всегда имеется некоторое количество радиоактивной эманации. Содержание эманации в газах настолько мало, что его часто выражают числом атомов, а не в каких-либо объемных или весовых единицах. [c.278]

    Сама радиоактивная эманация природных газов не имеет практического применения, но измерение ее содержания представляет интерес, поскольку наличие эманации свидетельствует о присутствии радиоактивных элементов. -О. [c.279]

    Добыча природного газа и его радиоактивность [c.159]

    Распространение в природе. Все благородные газы присутствуют в воздухе на 100 л воздуха приходится 932 мл Аг 1,5 мл Ые 0,5 мл Не 0,11 мл Кг и 0,008 мл Хе. Радон содержится в водах некоторых минеральных источников. Гелий обнаруживается во всех природных газах и в радиоактивных минералах (клевеит, т. е. уранинит, богатый лантаноидами). Из ядер гелия состоит на 36 % (масс.) Солнце. [c.388]

    Кроме того. Не содержится в некоторых природных газах (0,85—1,8%) и входит в состав различных минералов как продукт радиоактивного распада. [c.124]

    Рафаелло Назини (1854—1931) — профессор университетов в Падуе и Пизе. Ему принадлежат оригинальные исследования светопреломляющей способности органических соединений и ее связи с химическим строением и электролитической диссоциации в органических растворителях изучал тосканскую буру вулканического происхождения, радиоактивность природных газов, естественные минеральные воды подготовил многочисленную группу видных исследователей, которые внесли свой вклад в различные направления теоретической и прикладной химии [c.297]

    То обстоятельство, что осадочные породы обладают очень слабой, но вполне измеримой радиоактивностью и что некоторые природные газы содержат малые количества гелня, вызвало экспериментальные исследования действия а-излучения иа метан и жирные кислоты. Наличие гелия в некоторых природных газах, добываемых в Канзасе, Колорадо и Северном Тексасе, связывалось с близостью конгломерата Шинарумп, содержащего рассеянный карнотит, или с близостью захороненных гранитных хребтов [8]. Гелий не был обнаружен во многих природных газах, в большинстве же случаев содержание его меньше 0,5% содергкание гелия в количестве [c.85]


    Радон образуется прн радиоактивном распаде радия и в ничтожных количествах встречается в содержащих уран минералах, а также некоторых пр<фодных водах. Гелий, являющийся продуктом радиоактивного распада сс-излучающих элементов, иногда в за метном колрчастве содержится в природном газе и газе, выделяющемся нз нефтяных скважин. В огромных количествах этот элемент находится на Солнце и збездах. Это второй по распространенности (после водорода) из элементов космоса. [c.486]

    СЕРА (Sulfur, лат. светло-желтый) S — химический элемент VI группы 3-го периода периодической системы элементов Д. И. Менделеева, п. и. 16, ат. м. 32,06. С. известна с глубокой древности. В природе встречается в свободном состоянии (самородная С.) и в виде различных соединений, главным образом сульфидов металлов, солей серной кислоты, как составная часть угля, сланцев, нефти, природных газов и др. Природная С. состоит из четырех стабильных изотопов, известны 6 радиоактивных изотопов. С.— твердое вещество желтого цвета, нерастворима в воде, растворяется в сероуглероде, бензоле известны несколько модификаций С. ромбическая, моноклинная, которая при 119,3° С переходит в жидкую С. В жидкой С. наблюдается [c.222]

    Радон образуете при радиоактивном распаде радия и в ничтожных количествах встречается в содержащих урви минералах, а также в некоторых природных водах. Гелий, яыяющийся продуктом радиоактивного а-распада элементов, иногда в заметном количестве содержится в природном газе н газе, выделяющемся иэ нефтяных скважин. В огромных количествах этот элемент находится на Солнце и звездах. Это второй элемент по распросграненности в космосе (после водорода). [c.472]

    Распространение в природе. Инертные элементы полиизотопньг. Например, у криптона 6, а у радона даже 16 радиоактивных изотопов. Содержание благородных газов в воздухе соетавляет от 0,932% (об.) аргона до 10 % (об.) ксенона. В литосфере также в наибольших количествах содержится аргон [3,5-10 1% (мае.)], несколько меньше гелия и неона [8—5-10 % (мае.)], еще меньше криптона и ксенона [1,9-10 и 2,9" % (мае.)]. Минимально содержание в земной коре радона 4-10 1 % (мае.). Промышленные месторождения гелия обычно сопровождают в недрах Земли залегания природных газов некоторые из них содержат до 8% (об.) гелия. [c.402]

    ОТ радиоактивного криптона, извлечения гелия из природного газа и т. п. посредством непористых мембран-для выделения водорода из продувочных газов производства аммиака и др. (преимущественно металлические мембраны на основе сплавов палладия), для обогащения воздуха кислородом, регулирования газовой среды в камерах плодоовощехранилищ, извлечения водорода, аммиака и гелия из природных и технологических газов, разделения углеводородов. В перспективе возможно их применение для рекуперации оксидов серы из газовых выбросов. [c.333]

    Одни только дейтериевые циклы представляют неисчерпаемые источники энергии. Действительно, энергия дейтерия, содержащегося в 1 л воды, эквивалентна 300 л бензина, а на Земле 14-10 л воды. По современным оценкам содержащиеся в морской и океанической водах запасы дейтерия эквивалентны 10 т нефти. Для сравнения следует отметить, что мировое потребление энергетических ресурсов в 1980 г. составило 6-10 т нефти. Ученые считают, что дейтерий-тритиевый цикл, в котором тритий получается из лития, будет лежать в основе первых коммерческих реакторов. Он имеет самую низкую рабочую температуру и в 100 раз большую скорость реакции по сравнению с конкурирующими видами ядерных топлив. Тем не менее в перспективе три-тиевое топливо может рассматриваться лишь как промежуточная ступень. Главная цель — создание реактора, работающего на чисто дейтериевом или протоновом топливе, и тoчни <и которого в мире неисчерпаемы. Это позволит свести к минимуму радиоактивность и избежать сложного процесса получения трития. По мере того как исчерпываются наиболее доступные источники энергии, возникает потребность в передаче энергии к месту потребления на дальние и сверхдальние расстояния. Примером может служить сооружение гигантского газопровода, призванного транспортировать природный газ из Восточной Сибири в Западную Европу, и строительство высоковольтных линий электропередач, связывающих крупнейшие гидроэлектростанции нашей страны с промышленными регионами. [c.81]

    В.В. Белоусов предложил генетическую классификацию природных газов, подразделив их на газы 1) биохимического, 2) воз-дущного, 3) химического и 4) радиоактивного происхождения. [c.48]

    На, НС1, органические соединения), выступая в виде положительно заряженного протона в к-тах, в виде отрицательно заряженного Н в солеобразных гидридах и участвуя в металлической связи в гидридах переходных металлов. Природный В. состоит из смеси изотопов легкого В., или протия Ш (99,98%) и тяжелого В. ( Н), или дейтерия D (0,02%) с массовыми числами соответственно 1 и 2. В небольших количествах существует в природе и получен искусственно бета-радиоактивный изотоп В. ( Н), или тритий Т с массовым числом 3, период полураспада к-рого 12,262 года. Изотопы В. сильно отличаются по своим св-вам вследствие большого различия масс, В.— самый распространенный элемент вселенной, напр, атмосфера Солнца содержит 84% В. Земная кора на 1,0% по массе и на 16 ат.% состоит из В., гл. обр. в виде воды. Почти все орган, вещества содержат В. он встречается в вулканических и др. природных газах. Впервые В. выделил англ. физик и химик Г. Кавендиш в 1766, назвав его горючим воздухом . В 1787 франц. химик А. Лавуазье определил горючий воздух как новый хим. элемент и дал ему современное название. В обычных условиях молекула В, состоит из двух атомов, связанных ковалентной связью. При высоких т-рах молекулярный В. диссоциирует на атомы (степень диссоциации при т-ре 2-500° С равна 0,0013, при [c.196]


Смотреть страницы где упоминается термин Радиоактивность природных газов: [c.293]    [c.86]    [c.545]    [c.26]    [c.56]    [c.63]    [c.68]    [c.390]    [c.36]    [c.16]    [c.16]    [c.71]    [c.279]    [c.150]    [c.159]    [c.159]    [c.160]    [c.543]   
Гелиеносные природные газы (1935) -- [ c.48 , c.49 , c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Природные газы



© 2025 chem21.info Реклама на сайте