Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Земли содержание водорода

    Водород — самый распространенный элемент Вселенной. Он составляет основную массу Солнца, звезд и других космических тел. В недрах звезд на определенной стадии их эволюции протекают разнообразные термоядерные реакции с участием водорода. Они и являются источником неисчислимого количества энергии, излучаемого звездами в космическое пространство. Распространенность водорода на Земле существенно иная. В свободном состоянии на Земле он встречается сравнительно редко — содержится в нефтяных и горючих газах, присут ствует в виде включений в некоторых минералах. Некоторое количество водорода появляется постоянно в атмосфере в результате разложения органических веществ микроорганизмами, но затем водород быстро перемещается в стратосферу вследствие его легкости. Основная масса водорода в земной коре находится в виде химических соединений с другими элементами большая часть его связана в форме воды, глин и углеводородов последние составляют основу нефти и входят составной частью в природные горючие газы. Кроме того, растительные и животные (организмы содержат сложные вещества, в состав которых обязательно входит водород. Общее содержание водорода составляет 0,88% массы земной коры, и по распространенности на Земле он занимает 9-е место. [c.293]


    Развитие планет определялось их массой и расстоянием от Солнца. Небольшие планеты земной группы потеряли значительную часть легких элементов для планет-гигантов этот процесс не был характерен, они удержали в своем составе даже водород. Вследствие этого планеты подразделяются на две группы. Мы видели, что количественный химический состав планет-гигантов Очень близок к составу Солнца. Например, наиболее массивный Юпитер, масса которого в 318 раз превосходит массу Земли, состоит из 85% водорода, 10% гелия и только около 5% приходится на содержание других элементов. В атмосфере Урана водород стоит на втором месте после гелия, а в поверхностных слоях Земли — на восьмом — десятом. Однако водорода на Земле все же достаточно для образования большого количества воды. На Марсе же, масса которого в десять раз меньше массы Земли, содержание водорода настолько мало, что на нем не обнаружено сколько- [c.147]

    Водород - наиболее распространенный элемент во Вселенной, так как его атомы сосредоточены в межзвездном пространстве. На Земле содержание водорода около 1 % от общей массы земной коры. [c.240]

    Если сравнить химический состав Земли с составом Вселенной, то, казалось бы, между ними не должно быть существенных различий, за исключением, пожалуй, содержания водорода, который легко уходит из атмосферы в межпланетное пространство. К сожалению, судить о составе Земли можно лишь по составам атмосферы, гидросферы и земной коры, изученной в глубину не более чем на 20 км. Главная химическая особенность этих трех сфер — необычайно высокое содержание кислорода, что объясняется уже не строением ядер его атомов, а его химическими свойствами. Атомы кислорода способны образовывать прочные химические связи с атомами многих элементов, в том числе кремния и алюминия. В процессе образования земной коры эти элементы накапливались в ней благодаря легкоплавкости их соединений со щелочами. В итоге на поверхности нашей планеты выкристаллизовалась твердая кремнекислородная оболочка. Кислород, не считая воды, входит в состав 1364 минералов. В атмосфере кислород появился около 1,8 млрд лет назад в результате действия на минералы микроорганизмов. В настоящее время выделение кислорода растениями за счет фотосинтеза возмещает его убыль в атмосфере в ходе процессов окисления, горения, гниения, дыхания. По числу известных природных соединений (432) второе место занимает кремний. Далее по распростра- [c.266]

    Свободного водорода на Земле немного в воздухе на уровне моря его всего лишь 0,00005 %) (об.), в верхних слоях атмосферы содержание водорода увеличивается. Он выделяется при извержении вулканов и из буровых скважин, образуется при разложении бактериями органических веществ в условиях недостатка воздуха. [c.274]


    Распространение в природе. Водород — наиболее распространенный элемент в космосе (звезды, межзвездная среда, туманности, большие планеты — Юпитер, Сатурн), в состав космической материи входит 63 % Н, 36 % Не и 1 % остальных элементов. На Земле водород встречает(у1 главным образом в химически связанном виде (вода, живые организмы, нефть, уголь, минералы) в составе стратосферы имеется частично ионизированный свободный водород. В земной коре до глубины 17 км содержание водорода составляет [c.263]

    Метод центрифугирования. Известно, что сила тяготения, действующая на частицу, пропорциональна ее массе. Поэтому, например, под действием силы тяготения в атмосфере Земли происходит частичное фракционирование газов относительное содержание водорода и гелия в верхних слоях атмосферы выше, чем в нижних. [c.43]

    На рис. 24 показано относительное содержание различных элементов в атмосфере Солнца и на Земле. Видно, что относительное содержание тяжелых элементов, начиная с натрия, почти одинаково как в атмосфере Солнца, так и на Земле. Содержание кислорода, углерода, азота, гелия и тем более водорода в атмосфере Солнца во много десятков раз больше, чем на Земле. Особенно велика разница для водорода. Содержание его в атмосфере Солнца более чем в сто тысяч раз превышает содержание его на Земле. [c.73]

    Для предупреждения образования в аппаратуре и помещении взрыво- и пожароопасных газовых смесей состав выходящих из электролизера газов непрерывно и автоматически фиксируется приборами и, когда чистота водорода становится ниже 98,5%, а кислорода ниже 98%, подаются световой-и звуковой аварийные сигналы не менее одного раза в смену производится контрольный анализ газов переносными газоанализаторами в различных местах технологической схемы контролируется уровень жидкости в газо-сборниках, не допуская работу электролизера при отсутствии в мерном стекле видимого уровня столба жидкости систематически производится тщательная очистка опорных изоляторов электролизера для предотвращения токов утечки в землю электролизеры после остановки и перед пуском продуваются азотом. Для контроля за содержанием водорода в помещении имеются автоматически действующие газоанализаторы, включающие аварийный сигнал, когда содержание водорода в воздухе более 0,4%. При содержании водорода выше % технологическое оборудование цеха автоматически останавливается. При загорании водород тушат СОг, азотом или хладонами. [c.22]

    Среднее содержание водорода в атмосфере вблизи земной поверхности составляет 5-10-5% (об.), т. е. в свободном состоянии он встречается крайне редко. Солнце содержит 57 % (масс.) водорода и 40 % гелия. Содержание некоторых легких элементов в оболочке земли и во вселенной показано в табл. 1.33. [c.31]

    Повышение до 37 и даже до 50 /о содержания водорода в природном газе не требует серьезной реконструкции газопроводов. Трубы прокладывают в земле, причем трассы прокладки имеют наземную маркировку. [c.464]

    Бурые и каменные угли в большинстве своем имеют растительное происхождение и содержат в небольшом количестве минеральные вещества. Они образовались в теплом и сыром климате в глубокой древности из сильно разросшихся растений, когда они после гибели погружались на дно водоемов и поэтому не подвергались тлению и гниению, при которых содержащийся в растениях углерод большей частью превращается в углекислый газ и другие летучие вещества. В процессах разложения этих растений (главным образом под воздействием микроорганизмов) из них высвобождаются соединения, богатые водородом и кислородом, а содержание углерода растет — образуется торф. Торф затем покрывается другими отложениями (песком, глиной) и в результате геологических движений опускается в глубь земли, где под давлением и при высокой температуре процесс торфообразования переходит в процесс угле-образования (повышения содержания углерода). В ходе связанной с этим процессом миграции элементов содержание водорода и кислорода продолжает уменьшаться, а содержание углерода — расти в результате из торфа получаются бурый уголь, каменный уголь и, наконец, антрацит. Бурые угли образуются в течение 40—60 миллионов лет, а возраст каменного угля составляет по крайней мере 200—300 миллионов лет. Степень окаменения угля (обогащения углеродом) зависит, однако, не только от возраста, а в большой степени от других факторов, прежде всего от температуры и давления. [c.33]

    Водород в природе. Получение водорода. Водород в свободном состоянии встречается на Земле лишь в незначительных количествах. Иногда он выделяется вместе с другими газами при вулканических извержениях, а также из буровых скважин при добывании нефти. Но в виде соединений водород весьма распространен. Это видно уже из того, что он составляет девятую часть массы воды. Водород входит в состав всех растительных и животных организмов, нефти, каменного и бурого углей, природных газов и ряда минералов. На долю водорода из всей массы земной коры, считая воду и воздух, приходится около 1%. Однако при пересчете на проценты от общего числа атомов содержание водорода в земной коре равно 17%  [c.342]


    Ископаемые твердые топлива образовались из растений, некогда покрывавших Землю. Процессы превращения растений в ископаемые горючие вещества протекали в течение миллионов лет. Из растений образовывался торф, который со временем превратился в бурый уголь, а последний затем в каменный уголь. В этом процессе углеобразования изменялся состав топлив, причем увеличивалось содержание в них углерода и уменьшалось содержание водорода и кислорода. Поэтому, как видно из табл. 17, наиболее богаты углеродом старые по возрасту топлива — антрацит, каменный уголь и меньше всего углерода в молодых топливах — древесине и торфе. [c.169]

    Водород — самый распространенный элемент во Вселенной и широко распространенный на Земле. Содержание его в земной коре составляет 3% (мол. доли). [c.385]

    Количество свободного водорода на земле очень не.значительно. В воздухе на уровне моря его содержится всего лишь 0,00005% по объему в верхних слоях атмосферы содержание водорода увеличивается. Он выделяется при извержении вулканов, а также из буровых скважин при добывании нефти. [c.80]

    Изменение основного энергоресурса — не только переход с твердого топлива на жидкое и газообразное, но и процесс декарбонизации . Отношение содержаний водорода и углерода 1 3 — 1 10 для дерева, 1 2 для угля, 2 1 для нефти и 4 1 для природного газа. Таким образом, в течение последних двухсот лет человечество постепенно переходило на топливо, содержащее все большее количество атомов водорода [2]. Если эта тенденция продолжится, то следующим топливом на Земле должен стать водород, наиболее распространенный элемент во Вселенной и источник энергии Солнца. [c.9]

    Из всех химических реакций, которые люди научились проводить и контролировать для своих нужд, синтез аммиака из водорода и атмосферного азота, вероятно, имеет наибольшее значение. Это особенно понятно в нынешней ситуации, когда с каждым годом становится все ощутимее нехватка продовольствия. Выращивание растительных веществ требует внесения в почву значительных количеств азота в форме, легко усвояемой растениями. Количество продовольствия, необходимое, чтобы прокормить все возрастающее население земного шара, намного превосходит то, что можно произвести, полагаясь лишь на естественное содержание азота в почве. Для обеспечения высокой урожайности сельскохозяйственных культур требуются огромные количества удобрений, богатых азотом. Единственным широко доступным источником азота на земле является атмосферный N2. Таким образом, возникает проблема связывания атмосферного азота, т.е. превращения его в форму, усвояемую растениями. Этот процесс называют еще фиксацией азота. [c.40]

    Свободного водорода на Земле почти нет, в атмосфере его содержание не превышает 5-10 %. Практически весь водород находится в связанном состоянии в составе многих минералов, углей, нефти, живых и растительных организмов, но самым распространенным его соединением является вода. Основная масса воды содержится в океанах и морях (1,42-10 т), много воды находится в виде льда (3,5-10 т), масса подземных вод оценивается в -8- Ю " т, а масса пресной воды озер и рек составляет 5- 10 " т, на долю атмосферной влаги приходится 1,4-10 т. [c.211]

    Водород широко распространен в природе. Содержание его на Земле 3,0% (мол. доли). Он входит в состав воды, глин, каменного и бурого угля, нефти и т.д., а также во все животные и растительные организмы. В свободном состоянии водород встречается крайне редко (в вулканических и других природных газах). Водород — самый распространенный элемент космоса он составляет до половины массы Солнца и большинства звезд. Гигантские планеты солнечной системы Юпитер и Сатурн в основном состоят из водорода. Он присутствует в атмосфере ряда планет, в кометах, газовых туманностях и межзвездном газе. [c.300]

    Времена пребывания главных ионов в морской воде (вставка 4.3) являются важным индикатором того пути, по которому происходит химический круговорот в океанах. Все эти времена пребывания очень продолжительны (от Ю до 10 лет) и близки или превышают значения для самой воды (3,8 Ю лет). Длительные времена пребывания означают, что у океанских течений суше-ствует реальная возможность тщательного перемешивания воды и составляющих ее ионов. Это обеспечивает сглаживание изменений в отношениях ионов, возникающих в результате локальных процессов привноса или выноса. Именно большие времена пребывания ионов создают высокое постоянство ионных отношений в морской воде. Времена пребывания являются результатом высокой растворимости ионов и, следовательно, их отношений zjr (см. п. З.7.1.). Остальные катионы с похожими отношениями также имеют длительные времена пребывания [например, ион цезия ( s )], но они не относятся к главным в морской воде из-за их низкого содержания в земной коре. Интересным исключением является хлор. Его много в морской воде, у него большое время пребывания и тем не менее низкое содержание в земной коре. Ббльшая часть этого С1- дегазировалась из мантии Земли в виде хлористого водорода (НС1) в очень ранний период истории Земли (см. п. 1.3.1) и с тех пор включена в круговорот эвапориты—гидросфера (см. п. 4.4.2). [c.163]

    Смолы ИЗ нефтей можно также уда-лять, применяя адсорбирую-пще земли или животный уголь. Эта обработка является весьма важным методом очистки нефти. Адсорбированные минеральные масла могут быть удалены бензином, а смолы — соответственными растворителями. Таким образом подбором соответственных растворителей достигается также и разделение смол. Гольде и Эйхман последовательно применяли действие бепз1ша, эфира, тяжелого бензина и хлороформа на животный уголь, адсорбировавший смесь смол. С 1юмопц,ю этих растворителей они получили экстракты, у которых удельные веса и вязкости постепенно увеличивались, а содержание углерода и водорода уменьшалось за счет повышения содержания кислорода и серы. Количество смол обычно возрастает при- переходе от низших фракций к высшим. Гурвич приводит следующие цифры, относящиеся к различным дестиллатам бакинской нефти  [c.114]

    Для атмосферы, земной коры и океана данные приводятся в частях на миллион, т. е, в кубических сантиметрах на кубический метр (атмосфера), граммах на тонну (1000 кг) или в миллиграммах на килограмм (корг Земли) Относительная распространенность элементов на Солнце взята из работы (Ross J.E., АПиг L.H. S ien e, 1976, 191, 1223 она выражена относительно водорода (распространенность которого принята равной 1-10 ). Приводится логарифм этой относительной распространенности. Эти данные можно также найти в приложении А к работе [10]. Соответствующие значения для мышьяка, селена, теллура, иода, тантала, криптона и ксенона не приве.дены, так как их спектральные линии замаскированы линиями более распростргненных элементов. Данные для некоторых других элементов, особенно для тяжелых радиоактивных, также опущены из-за слишком малого их содержания. [c.14]

    Земная кора, включая атмосферу и гидросферу, на 76,7% состоит из таких неметаллов, как кислород, кремний, водород, хлор, фосфор, углерод, сера и азот. В морской воде — колыбели жизни на Земле — господствуют три неметалла кислород, водород и хлор. Их общее содержание в морской воде составляет 99%.  [c.228]

    Щелочноземельные металлы и их сплавы образуют гидриды, которые характеризуются высоким содержанием водорода у гидрида бериллия — 15,6% (масс.), магния—7,65% (масс.). Гидриды трех остальных редкоземельных металлов значительно более стабильны, чем MgH2. Диссоциация СаНа происходит при температуре 1074 °С 8гНг при 992 °С ВаНг при 943 °С. Среди сплавов редкоземельных металлов описано много важных гидридов и особенно сплавов типа АВв, где А — редкоземельный элемент, В — не образующий гидрида переходный элемент, обычно никель или кобальт,, например, LaN 5. .. Нг ЬаСоз. .. Нг. Редкие земли очень дороги, однако технические смеси редких земель — мишметаллы — могут представлять значительный интерес. [c.89]

    Между углеродистыми водородами известен лишь один, заключающий в частице 1 атом углерода и 4 атома водорода следовательно, это есть соединение с наивысшим процентным содержанием водорода (СН содержит 25°/о водорода). Этот предельный углеродистый водород СН называется болотным газом или метаном. Если приток воздуха к остаткам растений и животных ограничен, или даже не существует, то их разложение сопровождается образованием болотного газа, будет ли это разложение происходить при обыкновенной тем-температуре, или при температуре сравнительно весьма высокой. Оттого растения, разлагающиеся в болотах,под водою, выделяют этот газ. Всякий анает, что если тину болотного дна потрогать чем-нибудь, то из нее выделяется большое количество пузырей газа эти пузыри, хотя медленно, однако, выделяются и сами собою. Выделяющийся газ содержит преимущественно болотный газ, и его легко собрать, если стклянку опрокинуть в воде и в горло ее вставить (под водою же) воронку тогда пузыри газа легко уловить в отверстие воронки. Если дерево, каменный уголь и множество других растительных и животных веществ разлагаются действием жара без доступа воздуха, т.-е. подвергаются сухой перегонке, то они также выделяют вместе с другими газообразными продуктами разложения (углекислотою, водородом и различными другими веществами) много метана. Обыкновенно газ, употребляющийся для освещения — светильный газ, — получается именно этим способом, и потому он всегда содержит в себе болотный газ, смешанный с водородом и другими парами и газами, хотя он и очищается от некоторых из них [236]. А так как разложение органических остатков, образующих каменные угли, еще продолжается под землею, то в каменноугольных копях нередко продолжается еще выделение массы болотного газа, содержащего азот и СО . Смешиваясь с воздухом, он дает взрывчатую смесь, составляющую одно из бедствий копей этого рода, так как подземные работы приходится вести с лампами. Но эта опасность значительно уменьшается предохранительною лампою Гумфри Деви., который заметил, что если в пламя ввести плотную металлическую сетку, то поглощается столь много тепла, что за сеткой горение не продолжается (проходящие [c.259]

    Представляет интерес возрождение идеи Д. И. Менделеева о подземной бесшахтной газификации каменных углей, когда газификация протекает в подземном газогенераторе без извлечения топлива на поверхность, т. е. без трудоемких горных работ. Достоинство этого метода —также сохранение земельных участков от вскрытия. Метод заключается в том, что с поверхности земли к угольному пласту бурятся скважины, отстоящие друг от друга на расстоянии 25 — 30 м, после чего забои этих скважин соединяются каналом газификации по угольному пласту. Одни скважины предназначены для подвода дутья, а другие —для отвода образующихся газов. Таким образом, подземный газогенератор представляет собой систему дутьевых и газоотводящих скважин, соединенных реакционным каналом. Основной недостаток существующих способов подземной газификации на воздушном дутье — низкое содержание водорода и оксида углерода в полученном газе (Н., —12—16%, СО -—6—10%) и соответственно невысокая теплота сгорания 3000—4000 кДж/м . Такой газ целесо-эбразно применять только для энергетических целей сжиганием его на ТЭС, комбинируемых со станциями подземной газификации. Повышение содержания ценных компонентов в газе может быть достиг-.чуто применением парокислородного и кислородного дутья и совер-ленстБОванием систем подземной газификации. [c.209]

    Масло МН-2 для маслонаполненных кабелей напряжением ПО—220 кв по вязкости соответствует трансформаторному. Большая подвижность этого масла необходима, чтобы масло проходило через небольшие каналы в жиле кабеля и изоляции при подпитке в процессе эксплуатации. Масло МН-2 от трансформаторного отличается применением при его изготовлении строго определенного сырья (дистиллята доссорской нефти) и проведением дополнительной очистки отбеливающей землей. Для этой цели применяют также масло МН-4 из нефти Анастаси-евского месторождения. Из-за более высокого содержания ароматических углеводородов это масло более стабильно в электрическом поле, чем масло МН-2 в процессе эксплуатации не выделяет, а поглощает водород. В масло МН-4 вводят специальные присадки для повышения термической стабильности. [c.308]

    Каким образом атмосфера Земли достигла более чем 20% содержания кислорода, в то время как в атмосферах ближайших соседей, Венеры и Марса, его концентрации менее 0,1 /о Земля обладает атмосферой, которая в течение сотен миллионов лет как бы игнорировала законы физики и химии. Малые окисляемые составляющие атмосферы, такие, как метан, аммиак, водород, моноксид углерода и оксид трехвалентного азота, сохранились в присутствии больших концентраций кислорода. Термодинамические рассуждения указывают на неизбеж- [c.211]

    Водород — один из наиболее распространенных элементов на Земле. Его общее содержание в земной коре составляег 1%(масс.). При пересчете на атомарные [c.251]

    Содержание гелня на Земле невелико, однако он очень распространен в космосе (занимает второе место после водорода). Впервые этот элемент был обнаружен на Солнце методом спектрального анализа, что обусловило его название гелий (от греч. helios — Солнце). [c.106]

    Наибольшее распространение получило первое направление. Сначала в Ленинграде усилиями Главной геофизической обсерватории им. А. И. Воейкова [16], а затем в Москве и других промышленных городах и промышленных узлах были установлены для систематического наблюдения за состоянием воздушной среды стационарные павильоны размером в плане 2X2 м и высотой 2,9 м, в них размещаются метеорологические приборы и газоанализаторы. Пробы воздуха для анализа содержания вредных веществ отбираются на высоте около 3 м от земли. Измеряются концентрации наиболее распространенных вредных веществ диоксида серы, оксида углерода, диоксида азота и ингредиенты, характерные для промышленных, объектов данного города, например хлор, фторид водорода, фториды и др. В стенках павильона на высоте 1,5 м имеются отверстия, через которые отбирают пробы воздуха с наветренной стороны на аэрозольные примеси (пыль, сажа и др.). Переключение на забор воздуха с наветренной стороны происходит автоматически от датчиков — флюгара, установленного на мачте высотой около 8 м. Также вне павильона размещаются метеорологический прибор анеморумбограф для регистрации скорости и направления ветра. Применение автоматических газоанализаторов дает возможность централизованно контролировать загрязнение воздуха в городах и промышленных центрах (работы Берлянда М. Е. [16] и Щербань А. Н. [75]). Централизованная система контроля включает регистрацию автоматическими газоанализаторами концентраций различных вредных веществ и метеорологических [c.136]

    Все Э. X. образовались в результате многообразных сложных процессов ядерного синтеза в звездах и космич. пространстве. Эти процессы описываются разл. теориями происхождения Э. X., к-рые объясняют особенности распространенности Э. X. в космосе. Наиб, распространены в космосе водород и гелий, а в целом распространенность элементов уменьшается по мере роста 2. Такая жЬ тенденция сохраняется и для распространенности Э. х. на Земле, однако на Земле наиб, распространен кислород (47% от массы земной коры), далее следуют кремний (27,6%), алюминий (8,8%), железо (4,65%). Эти элементы вместе с кальцием, натрием, калием и магнием составляют более 99% массы земной коры, так что на долю остальных Э. х. приходится менее 1% (см. Кларки химических элементов). Практич. доступность Э. х.. определяется не только величинои их распространенности, но и способностью концентрироваться в ходе геохим. процессов. Нек-рые Э.х. не образзтот собств. минералов, а присугствуют в виде примесей в минералах других. Они наз. рассеянными (рубидий, галлий, гафний и др.). Э. х., содержание к-рых в земной коре менее 10 -10 %, объединяются понятием редких (см. Редкие элементы). [c.472]


Смотреть страницы где упоминается термин Земли содержание водорода: [c.137]    [c.631]    [c.311]    [c.25]    [c.81]   
Основы общей химии Т 1 (1965) -- [ c.117 ]

Основы общей химии том №1 (1965) -- [ c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Водород содержание

Земля



© 2025 chem21.info Реклама на сайте