Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гелий содержание в атмосфере

    Простые эфиры, особенно циклического строения, легко окисляются воздухом с образованием пероксидов. Присутствие последних крайне нежелательно, так как они разрушают сорбенты с привитой фазой и полимерные сорбенты, а также окисляют лабильные компоненты анализируемых смесей и поглощают в УФ-области. Наиболее часто из растворителей этого класса применяют тетрагидрофуран, обычно стабилизированный гидрохиноном. Перед перегонкой проверяют наличие пероксидов в тетрагидрофуране. К 1 мл растворителя прибавляют 1 мл. 10%-ного раствора К1 или Nal в ледяной уксусной кислоте. При низкой концентрации пероксида раствор окрашивается в желтый цвет, а при высокой — в коричневый. При заметном содержании пероксидов во избежание взрыва при перегонке их удаляют кипячением с 0,5% U2 I2 в течение 30 мин. Тетрагидрофуран после удаления пероксида хранят над твердым КОН (10—15% об.] в плотно закрытой бутыли из темного стекла в атмосфере инертного газа и перегоняют непосредственно перед, применением. Чистота полученного растворителя вполне достаточна дпя проведения эксклюзионной хроматографии на полужестких полистироль-ных гелях при детектировании рефрактометром. В других вариантах, особенно при работе с УФ-детектором, может потребоваться дополнительная адсорбционная очистка. [c.133]


    Неон содержится на Солнце и в звездах примерно в таком же количестве, как кислород. Однако на Земле его содержание меньше, чем гелия. Гелий уходит из атмосферы Земли в космическое пространство из-за его малой атомной массы. (Ат. масса Не=4.) Атомная масса неона равна 20,2, и низкое его содержание на Земле нельзя объяснить уходом в космос хотя бы потому, что молекулярная масса воды 18 и рассеяние ее молекул в космос не привело к потере воды Землей. Приведите любые возможные объяснения этого пока еще не объясненного наукой факта. [c.168]

    Получение и очистка газов. Большинство измерений в электрохимии проводят в отсутствие кислорода воздуха, который является электрохимически активным. В связи с этим исследования выполняют в атмосфере инертных газов азота, аргона, гелия. В ряде систем возможно использование водорода, который, однако, может проявлять электрохимическую активность на некоторых электродах при анодных потенциалах, Эти газы выпускаются промышленностью разной степени очистки. Если содержание кислорода в газах не превышает 0,005 %. то для большинства исследований нет необходимости в дополнительной очистке газов от следов кислорода и их очищают лишь от органических примесей пропусканием через трубки, заполненные активированным углем. При большом содержании кислорода в газах возникает необходимость его удаления. [c.31]

    Следовательно, содержание элементов, более тяжелых, чем гелий, в атмосферах звезд уменьшается с увеличением возраста звезды. Кроме того, оно связано с расположением звезды в той или иной части Галактики. В звездах сферической составляющей, имеющих большой возраст, содержание тяжелых элементов Очень мало. И наоборот, в плоской составляющей и тем [c.61]

    Течеискатель ПТИ-6 позволяет обнаружит в испытуемых откачиваемых объемах натекания до (3—б) 10 лмк/сек, оценивать их количественно и отмечать содержание гелия в атмосфере, составляющее 1/20 000 000 часть. Блок-схема течеискателя ПТИ-6 приведена на фиг. 419. [c.542]

    Среднее содержание водорода в атмосфере вблизи земной поверхности составляет 5-10-5% (об.), т. е. в свободном состоянии он встречается крайне редко. Солнце содержит 57 % (масс.) водорода и 40 % гелия. Содержание некоторых легких элементов в оболочке земли и во вселенной показано в табл. 1.33. [c.31]

    Накопление свинца в результате распада содержащихся в минералах радиоактивных элементов позволяет определить возраст соответствующих горных пород. Зная скорость распада доТЬ и и определив их содержание, а также содержание и изотопный состав свинца в минерале, можно вычислить возраст минерала, т. е. время, прошедшее с момента его образования (так называемый свинцовый метод определения возраста). Для минералов с плотной кристаллической упаковкой, хорошо сохраняющей содержащиеся в кристаллах газы, возраст радиоактивного минерала можно установить по количеству гелия, накопившегося в нем в результате радиоактивных превращений (гелиевый метод). Для определения возраста сравнительно молодых образований (до 70 тыс лет) применяется радиоуглеродный метод, основанный на радиоактивном распаде изотопа углерода бС (период полураспада около 5600 лет). Этот изотоп образуется в атмосфере под действием космического излучения и усваивается организмами, после гибели которых его содержание убывает по закону радиоактивного распада. Возраст органических остатков (ископаемые организмы, торф, осадочные карбонатные породы) может быть определен путем сравнения радиоактивности содержащегося в них углерода с радиоактивностью углерода атмосферы. [c.94]


    Содержание гелия в атмосфере земли 5,24-10 2 % (объемн.). По распространенности же во Вселенной гелий занимает второе место после водорода, н на его долю приходится 23 % космической массы. [c.527]

    Сопоставляя наблюдения из различных районов земного шара, Глюкауф [85] нашел, что содержание гелия является весьма постоянным и составляет (5,239 0,002) 10 . Однако гелий не является постоянной газовой примесью, так как большие количества его выделяются при процессах радиоактивного распада, протекающих в земной коре. Гелий состоит из двух изотопов — Не и Не , которые образуются при совершенно различных процессах. Отношение Не Не = 1,2 10 (например, [54]), т. е. большая часть гелия присутствует в виде Не". Общее количество гелия в атмосфере составляет 2,4-10 Не и 2,0 10 Не" при стандартных условиях. [c.103]

    Используемый для изотопического уравновешивания дейтерий (с содержанием водорода не более 2—3%) и спектрально чистый гелий, в атмосфере которого производится разряд или проведении изотопического анализа, заключены в бал.чонах 7 и 8. [c.367]

    Элементы нулевой группы, называемые инертными или благородными газами, имеются в земной коре и в атмосфере. Содержание их в воздухе колеблется от 10 (ксенон) до 0,932 объемных долей в процентах (аргон). В земной коре в наименьших количествах содержится радон (4-10 %), значительно больше содержание ксенона (2,9-10 %) и криптона (1,9-10 %) содержание гелия и неона приблизительно одинаково (8,5-10 7о) и, наконец содержание аргона достигает 3,5-10 %. [c.198]

    Особое значение это имеет при определении содержания гелия, водорода, сероводорода, азота и фракций тяжелых углеводородов. Поэтому перед отбором проб скважину продувают (выпуская газ в газопровод или атмосферу) до получения постоянного газового потока. На газовых месторождениях достаточно продувать скважину в течение 20—60 мин. [c.18]

    Метод центрифугирования. Известно, что сила тяготения, действующая на частицу, пропорциональна ее массе. Поэтому, например, под действием силы тяготения в атмосфере Земли происходит частичное фракционирование газов относительное содержание водорода и гелия в верхних слоях атмосферы выше, чем в нижних. [c.43]

    Содержание водорода в земной атмосфере составляет 10 %, а гелий почти полностью отсутствует в ней. Почему эти два газа практически отсутствуют в атмосфере, если их содержание во Вселенной столь велико  [c.452]

    На рис. 24 показано относительное содержание различных элементов в атмосфере Солнца и на Земле. Видно, что относительное содержание тяжелых элементов, начиная с натрия, почти одинаково как в атмосфере Солнца, так и на Земле. Содержание кислорода, углерода, азота, гелия и тем более водорода в атмосфере Солнца во много десятков раз больше, чем на Земле. Особенно велика разница для водорода. Содержание его в атмосфере Солнца более чем в сто тысяч раз превышает содержание его на Земле. [c.73]

    Развитие планет определялось их массой и расстоянием от Солнца. Небольшие планеты земной группы потеряли значительную часть легких элементов для планет-гигантов этот процесс не был характерен, они удержали в своем составе даже водород. Вследствие этого планеты подразделяются на две группы. Мы видели, что количественный химический состав планет-гигантов Очень близок к составу Солнца. Например, наиболее массивный Юпитер, масса которого в 318 раз превосходит массу Земли, состоит из 85% водорода, 10% гелия и только около 5% приходится на содержание других элементов. В атмосфере Урана водород стоит на втором месте после гелия, а в поверхностных слоях Земли — на восьмом — десятом. Однако водорода на Земле все же достаточно для образования большого количества воды. На Марсе же, масса которого в десять раз меньше массы Земли, содержание водорода настолько мало, что на нем не обнаружено сколько- [c.147]

    Для определения малых содержаний (1-10" %) серы в растворах используют предварительное электролитическое выделение элемента и последующее возбуждение спектра в атмосфере гелия при пониженном давлении в низковольтной искре 163].  [c.151]

    В выделенном из воздуха гелии содержание Не ничтожно мало 1,2-10" %. Вся остальная масса газа состоит пз тяжелого изотопа. Вероятно некогда, сотни миллионов лет назад, атмосфера была много богаче легким изотопом, который быстрее тяжелого ускользал в мировое прострап-ство. Если Не является главным образом продуктом а-распада в лито- и гидросфере, то иным, редким в условиях Земли ядерным процессам обязан своим происхождением Не . Он возникает в результате радиоактивного распада сверхтяжелого изотопа водорода трития (Т = H i), который образуется в верхних слоях атмосферы при обстреле азота нейтроналш космического происхождения, и довольно быстро (Т Vo = 12,46 лет) распадается с образованием Не  [c.87]

    Почему именно гелий используется в течепскателях Потому, что он обеспечивает чувствительность показаний благодаря малым размерам атома и малой вязкости газа он проникает через микроскопически малые каналы и неплотности в металле шва вместе с тем показания прибора однозначны благодаря очень малому содержанию гелия в атмосфере и полному его отсутствию среди газов, могущих выделяться из стенок вакуумных установок. [c.145]


    В урановых и ториевых минералах имеются включения гелия, содержание которого также может служить для определения возраста. 1 г урана дает 1,1 10 см гелия в год. Возраст по гелиевому методу, предложенному Болтвудом еще в 1905 г., часто бывает преуменьшенным по сравнению со свинцовым из-за потерь гелия в минерале. Принято считать, что весь гелий в этих минералах образовался из урана и тория. Однако, как выше указывалось, при изучении его изотопного состава в некоторых железных метеоритах было найдено 10—30% Не , что свидетельствует об ином его происхождении, так как ни уран, ни торий не дают Не . Последний не может происходить и из атмосферы, где его содержание равно 10 %. Панет [153], рассмотрев этот вопрос, получил для возраста некоторых железных метеоритов после поправки на примесь нерадиогенного гелия величины от 1 до 250 миллионов лет и обратил внимание на необходимость контроля изотопного состава гелия также нри исследовании земных образцов. [c.46]

    Из благородных газов атмосферы наибольший интерес представляют аргон и гелий. На начальной стадии эволюции Земли эти газы, 110 всей вероятности, уже были (космическое происхождение). Однако современные запасы гелия и аргона в атмосфере образовались в результате распада элементов рядов урана и тория. Учитывая количество этих элементов в Земле и инертность гелия, моншо было бы ондадать значительное накопление последнего в атмосфере. На самом же деле его содержание там совершенно ничтожно (0,00052% в гомосфере). Это объясняется большой утечкой гелия вследствие его легкости в мировое пространство. Следовательно, первичный космогенный гелий в атмосфере сохраниться не мог п современный гелий весь радиогенный. [c.188]

    Вскоре гелий был обнаружен в других минералах и горных IIopoдax, содержащих уран. Наличие гелия в земной коре позволяло сделать вывод о его содержании в атмосфере, хотя многие ученые утверждали, что этот легкий газ, выделяющийся из земной коры, полностью уносится из атмосферы в космическое пространство. Вскоре Кайзер, а затем Фридлендер (1896 г.), а также Бали в результате анализа первой выпаренной фракции жидкого воздуха убедительно доказали присутствие гелия в атмосфере. [c.4]

    Испытываются пилотные и разрабатываются промышленные установки для извлечения гелия из различного рода отработанных дыхательных смесей. Так, испытания опытной двухступенчатой установки извлечения гелия из отработанной смеси [90% (об.) Не, 5% (об.) Ог и 5% об.) N2] показали, что степень извлечения гел1ия при использовании мембран в виде плоских пленок на основе полиэфиримида достигает 97,1% [94]. Производительность установки по исходной смеси составляет 114 м /ч (давление 6,0 МПа). Пермеат I ступени (99,8 м /ч) с высоким [99,73% (об.) ] содержанием гелия направляют на повторное приготовление дыхательной смеои, а ретант П ступени разделения (14,2 м ч), содержащий 21,4% (об.) Не, выводят в атмосферу. Суммарная поверхность мембран в установке 18,4 м2. [c.326]

Рис. 4.12. Спектры поглощения исходного (0)и окисленного на различную глубину (2, 4, 5, 6) топлива ДТ-9 (УНПЗ, содержание 5 = 0.05% масс.) в присутствии металлической меди при 120 С О — исходное топливо относительно гексана 1,3 — топливо, выдержанное при 120 С в атмосфере гелия (120, 150 мин) 2, 4, 5, 6 — топливо при продолжительности окисления 62, 95, 119, 135 мин соответственно (топливо очищено на силикагеле) Рис. 4.12. <a href="/info/2753">Спектры поглощения</a> исходного (0)и окисленного на <a href="/info/72049">различную глубину</a> (2, 4, 5, 6) топлива ДТ-9 (УНПЗ, содержание 5 = 0.05% масс.) в <a href="/info/171056">присутствии металлической</a> меди при 120 С О — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1,3 — топливо, выдержанное при 120 С в атмосфере гелия (120, 150 мин) 2, 4, 5, 6 — топливо при <a href="/info/1551947">продолжительности окисления</a> 62, 95, 119, 135 мин соответственно (топливо очищено на силикагеле)
Рис. 4.17. Спектры поглощения исходного (0) и окисленного на различную глубину (1-4) топлива ДТ-7 (АО УНПЗ, содержание S = 0.05% масс.) в присутствии металлической меди при 120 С О — исходное топливо относительно гексана 1, 2, 3, 4 — топливо при продолжительности окисления 20, 38, 58, 71 мин соответственно 5, 6, 7 — топливо, выдержанное при 120 С в атмосфере гелия (60,120,180 мин) (топливо очищено на силикагеле) Рис. 4.17. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (1-4) топлива ДТ-7 (АО УНПЗ, содержание S = 0.05% масс.) в <a href="/info/171056">присутствии металлической</a> меди при 120 С О — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1, 2, 3, 4 — топливо при <a href="/info/1551947">продолжительности окисления</a> 20, 38, 58, 71 мин соответственно 5, 6, 7 — топливо, выдержанное при 120 С в атмосфере гелия (60,120,180 мин) (топливо очищено на силикагеле)
Рис. 4.18. Спектры поглощения исходного (0) и окисленного на различную глубину (2, 4, б, 7) топлива ДТ-8 (ЛО УНПЗ, содержание 8 = 0.6% масс.) в присутствии металлической меди при 120°С О — исходное топливо относительно гексана 1,3,5 — топливо, выдержанное при 120 С в атмосфере гелия (90, 135, 178 мин) 2, 4, 6, 7 — топливо при продолжительности окисления 105, 135, 163, 178 мин соответственно (топливо очищено на силикаге- Рис. 4.18. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (2, 4, б, 7) топлива ДТ-8 (ЛО УНПЗ, содержание 8 = 0.6% масс.) в <a href="/info/171056">присутствии металлической</a> меди при 120°С О — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1,3,5 — топливо, выдержанное при 120 С в атмосфере гелия (90, 135, 178 мин) 2, 4, 6, 7 — топливо при <a href="/info/1551947">продолжительности окисления</a> 105, 135, 163, 178 мин соответственно (топливо очищено на силикаге-
Рис. 4.19. Спектры поглощения исходного (0) и окисленного на различную глубину (2, 3, 4, 5) топлива ДТ-1 (АО Уфанефтехим , содержание 8 = 0.1% масс.) в координатах А-Я (а) и кинетика автоокисления топлива ДТ-1 в присутствии металлической меди при 120°С с одновременной регистрацией оптической плотности в координатах Д[02]-1 и Аз5о-1 (6) О — исходное топливо относительно гексана 1 — топливо, выдержанное при 120°С в атмосфере гелия (120 мин) 2, 3, 4, 5 — топливо при продолжительности окисления 40, 63, 89, 118 мин соответственно (топливо очищено на силикагеле) Рис. 4.19. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (2, 3, 4, 5) топлива ДТ-1 (АО Уфанефтехим , содержание 8 = 0.1% масс.) в координатах А-Я (а) и <a href="/info/624869">кинетика автоокисления</a> топлива ДТ-1 в <a href="/info/171056">присутствии металлической</a> меди при 120°С с одновременной <a href="/info/380263">регистрацией оптической</a> плотности в координатах Д[02]-1 и Аз5о-1 (6) О — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1 — топливо, выдержанное при 120°С в атмосфере гелия (120 мин) 2, 3, 4, 5 — топливо при <a href="/info/1551947">продолжительности окисления</a> 40, 63, 89, 118 мин соответственно (топливо очищено на силикагеле)
Рис. 4.20. Спектры поглощения исходного (0) и окисленного на различную глубину (3, 4, 5, 6) топлива ДТ-3 (АО НУНПЗ, содержание 8 = 0.11% масс.) в координатах А-Я. (а) и кинетика автоокисления топлива ДТ-3 в присутствии металлической меди при 120 С с одновременной регистрацией оптической плотности в координатах Д[02] 1 и Аз9о 1 (6) О — исходное топливо относительно гексана 1,2 — топливо, выдержанное при 120 С в атмосфере гелия (49, 120 мин) 3, 4, 5, 6 — топливо при продолжительности окисления 49, 64, 124, 184 мин соответственно (топливо очищено на силикагеле) Рис. 4.20. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (3, 4, 5, 6) топлива ДТ-3 (АО НУНПЗ, содержание 8 = 0.11% масс.) в координатах А-Я. (а) и <a href="/info/624869">кинетика автоокисления</a> топлива ДТ-3 в <a href="/info/171056">присутствии металлической</a> меди при 120 С с одновременной <a href="/info/380263">регистрацией оптической</a> плотности в координатах Д[02] 1 и Аз9о 1 (6) О — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1,2 — топливо, выдержанное при 120 С в атмосфере гелия (49, 120 мин) 3, 4, 5, 6 — топливо при <a href="/info/1551947">продолжительности окисления</a> 49, 64, 124, 184 мин соответственно (топливо очищено на силикагеле)
Рис. 4.23. Спектры поглощения исходного (0) и окисленного на различную глубину (1-4) топлива ДТ-7 (АО УНПЗ, содержание 5 = 0.0.5% масс.) в координатах А-Х (а, а ) и кинетика автоокисления топлива ДТ-7 в присутствии металлической меди при 120 С с одновременной регистрацией оптической плотности в координатах Д[02]-1 и Аз7о-1 о — исходное топливо относительно гексана 1, 2, 3, 4 — топливо при продолжительности окисления 20, 38, 58, 71 мин соответственно 5, 6, 7 - топливо, выдержанное при 120 С в атмосфере гелия (60, 120, 180 мин) (топливо очищено на силикагеле) Рис. 4.23. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (1-4) топлива ДТ-7 (АО УНПЗ, содержание 5 = 0.0.5% масс.) в координатах А-Х (а, а ) и <a href="/info/624869">кинетика автоокисления</a> топлива ДТ-7 в <a href="/info/171056">присутствии металлической</a> меди при 120 С с одновременной <a href="/info/380263">регистрацией оптической</a> плотности в координатах Д[02]-1 и Аз7о-1 о — <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1, 2, 3, 4 — топливо при <a href="/info/1551947">продолжительности окисления</a> 20, 38, 58, 71 мин соответственно 5, 6, 7 - топливо, выдержанное при 120 С в атмосфере гелия (60, 120, 180 мин) (топливо очищено на силикагеле)
Рис. 4.24. Спектры поглощения исходного (0) и окисленного на различную глубину (2, 4, 5, 6) топлива ДТ-9 (АО УНПЗ, содержание 8 = 0.05% масс.) в координатах А- (а) и кинетика автоокисления топлива ДТ-9 в присутствии металлической меди при 120 С с одновременной регистрацией оптической плотности в координатах Д[02-1 и Аз7о 1 (б) о исходное топливо относительно гексана 1,3 — топливо, выдержанное при 120°С в атмосфере гелия (120, 150 мин) 2, 4, 5, 6 — топливо при продолжительности окисления 62, 95, 119, 135 мин соответственно (топливо очищено на силикагеле) Рис. 4.24. <a href="/info/2753">Спектры поглощения</a> исходного (0) и окисленного на <a href="/info/72049">различную глубину</a> (2, 4, 5, 6) топлива ДТ-9 (АО УНПЗ, содержание 8 = 0.05% масс.) в координатах А- (а) и <a href="/info/624869">кинетика автоокисления</a> топлива ДТ-9 в <a href="/info/171056">присутствии металлической</a> меди при 120 С с одновременной <a href="/info/380263">регистрацией оптической</a> плотности в координатах Д[02-1 и Аз7о 1 (б) о <a href="/info/1878724">исходное топливо</a> <a href="/info/739862">относительно гексана</a> 1,3 — топливо, выдержанное при 120°С в атмосфере гелия (120, 150 мин) 2, 4, 5, 6 — топливо при <a href="/info/1551947">продолжительности окисления</a> 62, 95, 119, 135 мин соответственно (топливо очищено на силикагеле)
    Второй метод получения металлического иттрия основан на образовании промежуточного сплава Y-Mg при восстановлении УРз кальцием. Процесс ведут в титановом тигле при 900—960° в атмосфере аргона. В состав шихты, помимо УРз и 10%-ного избытка Са, вводят безводный СаС1, и Mg. Получается сплав, содержащий 24% Mg. Выход металла > 99%. Mg и Са удаляются в вакууме (3-10" мм рт. ст.) при 900—950°. Содержание их после этого в иттрии 0,01 %. Компактный металл получают, переплавляя губку в дуговой печи в атмосфере гелия остаточное давление 10 мм рт. ст. Содержание кислорода в конечном продукте 0,12—0,25%. Уменьшить содержание кислорода до 0,1% можно, используя в качестве восстановителя литий или сплав Са-Ы. Еще более чистый металл получается, если брать шихту из УРз, Mgp2, ЫРи восстановитель—литий. Смесь фторидов после обработки фтористым водородом восстанавливают при 1000°, в результате получается сплав У-Mg и шлак из Ь1Р. После отгонки магния содержание кислорода в иттрии 0,05—0,15%. Рекомендуется также рафинировать сплавы У-Mg, экстрагируя расплавленными солями кислородсодержащие примеси. С этой целью сплав Y-Mg расплавляют и перемешивают со смесью УРз и СаС12 в атмосфере инертного газа при 950°. Содержание кислорода в конечном продукте 0,05% [148, стр. 136— 148]. [c.143]

    Г.-один из наиб, распространенных элементов космоса-занимает второе место после водорода. Содержание Г. в атмосфере (образуется в результате а-распада Ас, ТЪ, U) 5,27-10" % по объему. Запасы Г. в атмосфере, литосфере и гидросфере оцениваются в 5-10 м Гелионос-ные прир. газы содержат, как правило, до 2% по объему Г. главные пром. месторождения этих газов находятся в США (2,1-10 м Г.), СССР, Канаде (10 ЮАР. Гелий содержится также в минералах клевеите, монаците, юрианите (до 10,5 л/кг). [c.513]

    Большинство звезд в основном состоит из водорода. Его линии наблюдались в спектре Солнца еще в 1802 г. У. Волластоном, расшифрованы они были значительно позднее Г. Кирхгофом. В 1876 г. А. Хеггинсон впервые сфотографировал линии водорода в спектре атмосферы Веги, Сейчас известно около 2000 звезд с яркими линиями водорода в спектре. Большинство из них принадлежит к классу В, хотя некоторые относятся к классу О и А. Второе местр по распространенности занимает гелий, сравнительно много в звездах кальция и железа. Для решения вопроса о происхождении химических элементов очень важно, что звезды и другие космические объекты сильно отличаются по содержанию в них различных элементов. Большинство звезд нашей Галактики имеют атмосферы с явным преобладанием водорода. Остальные элементы, кроме гелия, содержатся в них в очень малых количествах. Об этом свидетельствуют данные табл. 4, в которой приведено содержание некоторых элементов в атмосфере наиболее [c.58]

    Химический состав межзвездного газа подобен составу атмосфер Солнца и многих звезд (см. табл. 4). Основную массу этого газа составляет водород, содержание гелия еще не установлено, но не ис1слючено, что оно значительно. Содержание металлов очень мало так, на сколько сот тысяч атомов водорода приходится один атом кальция. Обнаружены в межзвездном газе простейшие двухатомные молекулы, например СН. Одна такая молекула приходится в среднем на сто миллионов атомов водорода. Средняя плотность водорода в нашей Галактике в ее центральной части равна приблизительно четырем атомам на 10 см . Эта величина растет к периферии Галактики, достигая на расстоянии 6000 парсеков от центра концентрации, равной одному атому на 1 сж . При дальнейшем увеличении расстояния содержание водорода уменьшается. Так как концентрация звезд непрерывно уменьшается по мере Удаления от центра Галактики, то водород в центре составляет очень малую долю общей плотности вещества. На периферии же его доля значительна и составляет около 15% общего количества вещества. [c.63]

    Особый интерес представляет и.зменение изотопного состава гелия, который, как уже указывалось, был почти полностью потерян Землей вместе с другими инертными газами при ее образовании. Долгое время считали, что гелий в природе состоит исключительно из Не , пока в 1936 г. не был обнаружен изотоп Не . Содержание Не в атмосфере незначительно, так что отношение Не /Не равно 1,2 10 . Количество Не в газовых скважинах в десять раз меньше, а в гелии, выделенном из радиоактивных минералов, практически равно нулю. Однако в некоторых минералах, например сподумене (алюмосиликате лития), количество Не в десять раз больше, чем в атмосфере. Накопление его, по-види1 му, происходит в результате реакции [c.160]

    Таулли [315] запатентовал органофильный аэрогель с улучшенной способностью к диспергированию в органической среде. Автор нагревал полученный аэрогель под давлением в присутствии паров спирта, которые могли покрывать поверхность геля этоксигруппами, хотя природа органической добавки в продукте не была ясна. Прозрачные кремнеземные аэрогели с очень низкими значениями кажущейся плотности в области 0,18— 0,35 г/см , согласно данным Тейшнера и др. [316], оказались подходящими при изучении эффекта Черенкова для частиц с высокими энергиями, получаемых на протонном ускорителе. Аэрогели с такими низкими плотностями получали гидролизом этилсиликата в спирте с минимальным содержанием воды с удалением паровой фазы при температуре выше критической. Некоторые разновидности полученных прозрачных аэрогелей имели удельную поверхность 1000 м /г (что соответствует диаметру частиц кремнезема всего лишь 20—30 А), объем пор 18 см г и кажущуюся плотность 0,05 г/см . Смесь, состоящую из метилортосиликата 51(ОСНз)4 в метаноле (10 % по объему), уксусной кислоты с концентрацией 0,175 н. и воды (4 моль воды на 1 моль сложного метилового эфира), нагревали в автоклаве до 250°С (критическая температура СН3ОН равна 242°С). Пары удаляли в вакуумных условиях и охлаждали аэрогель в атмосфере азота. На использование низших спиртов от метилового до бутилового в таком способе был получен патент [317]. [c.741]

    Гелий в газовых залежах имеет радиогенное происхождение. Его образование идет постоянно за счет радиогенных процессов в земной коре. Древние породы обычно более обогащены гелием, так как это очень легкий и миграционноспособный газ, он уходит из молодых отложений в атмосферу. Подмечена закономерная связь содержаний гелия и азота в газах. Палеозойские породы в наибольшей степени обогащены гелием и азотом. [c.268]


Смотреть страницы где упоминается термин Гелий содержание в атмосфере: [c.104]    [c.17]    [c.110]    [c.352]    [c.44]    [c.252]    [c.330]    [c.36]    [c.81]    [c.867]   
Общая и неорганическая химия (1981) -- [ c.485 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Атмосфера содержание

В табл. 1. 2 приведены средние атомные веса, массовые числа и относительное содержание стабильных изотопов данного элемента Стабильные изотопы и их относительное содержание в атмосфере Средний Массовое число Относительное Элемент атомный изотопа содержание, об вес Гелий (Не)

Гелий в атмосфере

Содержание гелия в земной атмосфере



© 2025 chem21.info Реклама на сайте