Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные горячим способом получаемые

    Для получения металлических защитных покрытий применяются различные способы электрохимический (гальванические покрытия), погружение в расплавленный металл, металлизация, термодиффузионный и химический (см. 52). Из расплава получают покрытие цинка (горячее цинкование) и олова (горячее лужение). [c.219]

    Металлические покрытия на защищаемые изделия наносят погружением их в расплавленный металл (горячее лужение, цинкование), гальваническим путем и другими методами. Гальванический способ является наиболее эффективным, так как при минимальном расходе металла позволяет получать равномерные прочные защитные слои желаемой толщины. [c.228]


    Металлические покрытия на защищаемые изделия наносят погружением их в расплавленный металл (горячее лужение, Щ1нкование), гальваническим путем и другими методами. Гальванический способ является наиболее эффективным, так как при минимальном расходе металла позволяет получать равномерные прочные защитные слои желаемой толщины. Металлическое покрытие называется анодным или катодным в зависимости от роли его в макрогальванической паре с основным металлом, что в конечном счете определяется величиной потенщ1ала покрытия по отношению к защищаемому металлу. Покрытие, электродный потенциал которого в данных условиях более отрицателен, чем потенциал защищаемого металла, называется анодным, а то покрытие, потенциал которого более положителен по сравнению с потенциалом защищаемого металла, называется катодным. Например, при частичном нарушении цинкового покрытия на железном изделии возникает гальваническая пара, где катодом служитжелезо( е2+/Ре = — 0,44В) анодом — цинк ( Р 2+/2п == — в растворе электро- [c.285]

    При электролитическом способе получаются покрытия с более высокими защитными свойствами. Кроме того, этот способ дает возможность точно регулировать количество металла, необходимое для осаждения на катоде при заданной толщине покрытия, а потому экономия цинка при электролитическом цинкований по сравнению с горячим достигает 50% и более. [c.152]

    Как видно из приведенного выше, на базе современного состояния теории фосфатирования нет оснований для выбора того или иного технологического приема, при применении которого можно было бы получить слои фосфата с заданными свойствами. Существует ряд технологических приемов фосфатирования горячее фосфатирование в ваннах ( = 96 99° С), струйное и холодное фосфатирование в ваннах (< = 25 30° С) и фосфатирование пастами. Выбор способа фосфатирования можно было бы обосновать технико-экономическими показателями, поскольку изменение технологии фосфатирования, по-видимому, мало отражается па свойствах фосфатного слоя, используемого в качестве грунта под защитное покрытие. Однако для этого не имеется достаточного количества данных. Исходя из общих соображений, для фосфатирования крупногабаритных изделий применять горячий способ фосфатирования нерационально, так как для подогрева ванн с большим зеркалом необходим значительный расход пара. В случае применения метода струйного фосфатирования требуются крупногабаритные туманные камеры и соответственно большой расход раствора и пара на его подогрев. Заслуживают внимания такие способы, как кистевое нанесение и применение фосфатировочных паст (хотя этот процесс занимает много времени). Лучшим методом является использование ванн холодного ускоренного фосфатирования. [c.60]


    Защитные покрытия металлами широко применяют на практике. Распространение получили следующие способы нанесения покрытий горячий, металлизационный, диффузионный, гальванический, электролитический, химический и путем плакирования. [c.238]

    Для нанесения покрытий погружением в расплавленный металл не требуется сложного оборудования, этот процесс отличается высокой производительностью и возможностью быстрого получения толстых защитных слоев металла. Широкое применение горячий способ покрытия получил при изготовлении луженого листового железа (белая жесть), оцинкованной проволоки и листа, освинцованной химической аппаратуры. [c.41]

    На заводах основной химической промыщленности применяются полиэтиленовые трубы для транспортировки растворов серной, фосфорной и кремнефтористоводородной кислот при температурах до 60° С. Опыт применения полиэтиленовых труб, снабженных снаружи оболочкой из углеродистой стали, оказался неудачным из-за растрескивания полиэтилена в местах разбортовки труб. Так, в цехе двойного суперфосфата большое количество таких труб пришло в негодность на линии транспортировки кремнефтористоводородной кислоты. Из полиэтилена изготовляют емкостную аппаратуру и детали абсорберов фтористых газов. Футеровка крупногабаритной аппаратуры полиэтиленом встречает большие трудности из-за низкой адгезии его к металлической поверхности и отсутствия надежных клеев. В Советском Союзе разработан способ защиты крупногабаритной аппаратуры полиэтиленом по предварительно приваренной к металлу точечной сваркой металлической сетке. Полиэтилен накатывается на подогретую горячим воздухом сетку и образует с ней монолитное покрытие. Затем накатывается второй слой полиэтилена, который образует плотное защитное покрытие [15]. На ряде химических заводов применяется способ пламенного напыления полиэтилена. Однако этот метод малопроизводителен. Покрытие толщиной 0,5 мм получается при 10—12-кратном напылении. [c.186]

    Нельзя не подчеркнуть важности получения равномерного по толщине покрытия для достижения максимальных защитных свойств. Это, в частности, относится к оцинкованной проволоке. Очень равномерную толщину можно получить на проволоке, электролитически покрывая ее цинком по методу Тентона (стр. 593) и достаточную равномерность при нанесении цинка на проволоке из расплава в условиях, когда она выходит из ванны вертикально. Однако, на проволоке, оцинкованной горячим способом, имелись участки с самой разнообразной толщиной. В тех случаях, когда покрытие слишком толстое, оно будет легко трескаться при изгибе или закручивании, особенно, если в покрытии имеется большое количество сплава там, где оно тоньше, будет быстрее происходить коррозионное разрушение. Материалы с различной толщиной покрытия не оправдывают затраты на цинк. Важность одинаковой толщины в цистернах выявлена на стр. 583. Многие полезные данные в отношении оцинкованных железных и стальных конструкций (включая проволоку, тросы, полосы и скобяной товар) могут быть найдены в обзоре, выпущенном американским обществом испытания материалов (1956 г.), он содержит 21 спецификацию, 3 рекомендации практикам и 5 методов испытания. [c.576]

    При керамической сварке тепловую энергию получают при сгорании в струе кислорода металлических порошков, например, алюминия, кремния и др. Торкрет-массу, содержащую такой топливный компонент и огнеупорный материал, например, динасовый мертель, подают в среде кислорода на нагретую до 800—1000 С (не менее) кладку. Большое количество тепла, выделяющегося при сгорании металлов в кислороде, расходуется на расплавление огнеупорных компонентов торкрет-массы. Условие высокой температуры кладки обуславливается необходимостью инициирования и поддержания горения. Метод ремонта с помошью экзотермических торкрет-масс состоит в нанесении на горячую кладку печи водной суспензии или сухих порошков, включающих термическую смесь, то есть алюминий или кремний и оксиды металлов, например, железа, кобальта, никеля, марганца, огнеупорный порошок. Нагреваясь от кладки, алюминий (кремний) вступает в <симическую реакцию с твердыми оксидами. Выделяющаяся при этом тепловая энергия расходуется на расплавление материала и формирование на дефектах защитной огнеупорной наплавки. Способ не нуждается в использовании традиционных энергоносителей — топливного газа или кислорода, так как процесс теплогенерации происходит в твердой фазе. Есть способы, комбинирующие факельное торкретирование и экзотермические добавки. [c.203]

    Пром. произ-во П. (в т, ч. и в СССР) осуществляют тремя способами 1) суспензионная полимеризация по периодич. схеме. В., содержащий 0,02-0,05% по массе инициатора (напр., ацилпероксиды, диазосоединения), интенсивно перемешивают в водной среде, содержащей 0,02-0,05% по массе защитного коллоида (напр., метилгидроксипропилцеллюло-за, поливиниловый спирт). Смесь нагревают до 45-65 °С (в зависимости от требуемой мол. массы П.) и заданную т-ру поддерживают в узких пределах с целью получения однородного по мол. массе П. Полимеризация протекает в каплях В., в ходе ее происходит нек-рая агрегация частиц в результате получают пористые гранулы П. размером 100-300 мкм. После падения давления в реакторе (степень превращения В. ок. 85-90%) удаляют непрореагир. мономер, П. отфильтровывают, сущат в токе горячего воздуха, просеивают через сита и расфасовывают. Полимеризацию проводят в реакторах большого объема (до 200 м ) новые произ-ва полностью автоматизированы. Уд. расход В. [c.621]


    Защитные металлические покрытия могут получаться различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), совместной, прократкой (двухслойные металлы), погружением (горячие покрытия), диффузионным (термодиффузионные покрытия), химическим и контактным. Недостатком всех металлических защитных покрытий является их пористость исключение составляют биметаллы. Покрытия могут быть анодными (цинковые) или катодными (никелевые, медные). Анодные покрытия лучше защищают металл, но только на срок до своего разрушения. Катодные покрытия являются защитными только при условии их сплошности и. отсутствия пор. [c.134]

    Защитные покрытия из полиизобутилена и полиэтилена могут также изготовляться по методу фирмы Кнапзак-Грисхейм (Кпарбаск-СпеБвЬет) [296], [297], [298], [299]. При добавке 0,5—2 % окиси титана уже при весьма низких температурах получаются прочные, связные покрытия [300]. Покрытия получаются без единой трещины. Необходимая для этого процесса порошкообразная форма полиэтилена и полиизобутилена может быть приготовлена различными способами. По данным французского патента [301], горячую массу растворяют в растворителе и затем измельчают образующийся при охлаждении гель, одновременно добавляя к смеси силиконовое масло. В ФРГ одна из [c.296]

    Другими важными представителями подгруппы неорганических материалов являются искусственные волокна минеральная, шлаковая и стеклянная вата. Сырьем для минеральной ваты служат горные породы (мергели, доломиты, базальты и др.), для шлаковой — доменный шлак, а для стеклянной ваты — материалы, из которых получают различные виды стекла (кварцевый песок, известь, сода). Исходную шихту расплавляют в вагранках или в ванных, печах. Для получения волокон из расплава чаще применяется фильерно-дутьевой способ, в котором расплав поступает сначала в платиновый питатель, имеющий большое число фильерпых отверстий (диаметром 1,8 мм), а вытекающие из них струйки расплава разбиваются струей водяного нара или горячего воздуха, выходящей из сопла со скоростью до 600 м/с, на мелкие шарики, которые вытягиваются на лету в нити. Средняя толщина минеральной ваты 6—7 мкм. Вата марки 100 имеет объемную массу 100 кг/м и коэффициент тенлонроводности 0,045 Вт/(мК), а вата марки 150 — Роб =150 кг/м и X == 0,047 Вт/(м К). Стекловолокно обычное теплоизоляционное имеет толщину нитей 12—35 мкм и его показатели аналогичны минеральной вате. Выпускается и ультратонкое волокно (УТВ) с диаметром нити около 1 мкм оно при роб =5-6 кг/м имеет Я==0,031 Вт/(мК). Минеральная и стеклянная вата могут применяться как засыпной материал, но дают большую усадку. Нагрузка на них не должна превышать 0,2 Н/см . Эти материалы не горючи, не проходимы для грызунов. Они имеют малую гигроскопичность (не больше 2%), но большое водопоглощепие (до 600%>). При выполнении изоляционных работ необходимо применять защитные меры. [c.47]


Смотреть страницы где упоминается термин Защитные горячим способом получаемые: [c.260]    [c.27]    [c.47]    [c.107]    [c.435]    [c.611]    [c.107]    [c.239]    [c.39]    [c.255]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.96 ]




ПОИСК







© 2025 chem21.info Реклама на сайте