Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиоактивные изотопы определение количества

    ТРИТИЙ — радиоактивный изотоп водорода с массовым числом 3, ядро которого состоит из одного протона и двух нейтронов (символ Т или Н). Период полураспада = 12,26 лет при распаде испускает мягкие -частицы. Незначительные количества Т. образуются в результате ядерных процессов. В промышленности Т. получают облучением лития медленными нейтронами в ядерном реакторе. Т.— газ. Соединение Т. с кислородом Т О — сверхтяжелая вода — образуется при окислении Т. над горячим оксидом меди (И) или при электрическом разряде. Известно большое количество соединений (главным образом органических), включающих в себя, наряду с обычным водородом, и Т. Т. применяют как горючее в термоядерных бомбах и в ядерной технике, как радиоактивный индикатор в различных исследованиях, для определения возраста метеоритов и др. [c.254]


    Радиоактивные изотопы нашли широкое применение в различных областях науки и техники. Они используются в приборах промышленного контроля, например для выявления дефектов в металлах и сплавах и определения уровня жидкости в закрытых емкостях. Ценным методом научного исследования стал метод меченых атомов. Метод заключается в том, что к исследуемому элементу добавляют в незначительном количестве радиоактивный изотоп, по излучению которого судят о поведении элемента в тех или иных процессах и о его содержании в тех или иных объемах или на поверхности раздела веществ. В медицине радиоактивные изотопы используют для диаг- [c.36]

    Сущность метода . В общей массе элемента калия содержится радиоактивный изотоп в количестве 0,0119%. Изотоп излучает Р-лучи с энергией 1,5 Мэе, позитроны, рентгеновские лучи и - -лучи с энергией 1,5 Мэв 75% активности обусловлено Р-частицами, а остальные 25% приходятся в основном на -излуче-ние. Это радиоактивное излучение позволяет определять содержание калия в различных природных и искусственных смесях. Относительная погрешность такого определения не превышает 10%. [c.278]

    Одним из наиболее интересных прикладных радиоактивных методов является определение возраста углеродсодержащих материалов. Метод основан на предположении о том, что отношение количеств радиоактивного изотопа углерода С и стабильно- Таблица 19.2 ГО В живых организмах (в растениях, усваивающих углекислый газ из воздуха, и в животных, питающихся этими растениями) равно их отношению в атмосфере (Ю ), где оно не меняется во времени. [c.581]

    Период полураспада (Т. д)- время, за которое количество нестабильных частиц уменьшается наполовину. П. п.— одна из основных характеристик радиоактивных изотопов, неустойчивых элементарных (фундаментальных) частиц. Периодическая система элементов Д. И. Менделеева — естественная система химических элементов. Расположив элементы в порядке возрастания атомных масс (весов) и сгруппировав элементы с аналогичными свойствами, Д. И. Менделеев составил таблицу элементов, выражающую открытый им периодический закон Физические и химические свойства элементов, проявляющиеся в свойствах простых и сложных тел, ими образуемых, стоят в периодической зависимости от их атомного веса (1869—1871 гг.). Периодический закон и периодическая таблица элементов Д. И. Менделеева позволяют установить взаимную связь между всеми известными химическими элементами, предсказать существование ранее неизвестных элементов и описать их свойства. На основе закона и периодической системы Д. И. Менделеева найдены закономерности в свойствах химических соединений различных элементов, открыты новые элементы, получено много новых веществ. Периодичность в изменении свойств элементов обусловлена строением электронной оболочки атома, периодически изменяющейся по мере возрастания числа электронов, равного положительному заряду атомного ядра Z. Отсюда современная формулировка периодического закона свойства элементов, а также образованных ими простых и сложных соединений находятся в периодической зависимости от величин зарядов их атомных ядер (Z). Поэтому химические элементы в П. с. э. располагаются в порядке возрастания Z, что соответствует в целом их расположению по атомным массам, за исключением Аг—К, Со—N1, Те—I, Th—Ра, для которых эта закономерность нарушается, что связано с нх изотопным составом. В периодической системе все химические элементы подразделяются на группы и периоды. Каждая группа в свою очередь подразделяется на главную и побочную подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы главной и побочной подгрупп в каждой группе, как правило, обнаруживают между собой определенное химическое сходство главным образом в высших степенях окисления, которое, как правило, соответствует номеру группы. Периодом называют совокупность элементов, начинающуюся щелочным металлом и заканчивающуюся инертным газом (особый случай — первый период) каждый период содержит строго определенное число элементов. П. с. э. имеет 8 групп и 7 периодов (седьмой пока не завершен). [c.98]


    Такие методы определений — методи изотопного разведения основаны на том, что соотношение между количеством радиоактивного изотопа и количеством нерадиоактивного изотопа как в исходном растворе, так и в получаемом осадке неизменно. [c.597]

    Определение при помощи радиоактивного изотопа калия К . Описанный выше радиометрический метод определения калия пригоден для анализа сравнительно больших количеств исследуемого вещества Если анализу подлежит очень малая навеска или маленький объем разбавленного раствора, то здесь оказываются пригодными способы, основанные на использовании искусственного радиоактивного изотопа К . Описан радиометрический метод определения калия в виде хлороплатината с применением К в качестве индикатора [1532] Метод изотопного разбавления — осаждение калия в виде перхлората в присутствии того же индикатора [2667] —применен для анализа почвы [686]. На некоторые другие работы о применении К в аналитической химии мы только сошлемся (541, 1612] [c.112]

    Такой метод особенно удобен при необходимости исследования процесса в промышленном масштабе, когда точные измерения количеств реагирующих веществ и определенных продуктов иногда затруднены или даже невозможны. В этом случае в реакционную смесь вводят известное количество инертного компонента (например, радиоактивного изотопа), концентрацию которого определить нетрудно, и на основе анализа смесей перед реакцией и после нее рассчитывают степень превращения, выход, производительность и т. д. Для интерпретации результатов в общем случае хорошо подходят стехиометрические уравнения (У-17)—(У-20). [c.125]

    Одним из часто применяемых способов определения износа деталей небольшого веса является взвешивание их до и после испытания. Получил применение и радиометрический метод определения скорости изнашивания с помощью радиоактивных изотопов (метод меченых атомов). Идея радиометрического метода основана на том, что при введении в материал детали (износ которой изучают) радиоактивного изотопа вместе с продуктами износа будет отделяться пропорциональное им количество атомов радиоактивного изотопа и по интенсивности их излучения можно судить об износе материала. [c.362]

    Использование радиоактивных изотопов. Радиоактивные изотопы нашли широкое применение в различных областях науки и техники. Они используются в приборах промышленного контроля, например для выявления дефектов в металлах и сплавах и определения уровня жидкости в закрытых емкостях. Ценным методом научного исследования стал метод меченых атомов. Метод заключается в том, что к исследуемому элементу добавляют в незначительном количестве радиоактивный изотоп, по излучению которого судят о поведении элемента в тех или иных процессах и о его содержании в объемах или на поверхности раздела веществ. В медицине радиоактивные изотопы используют для диагностики и лечения. С помощью радиоактивных изотопов определяют возраст углеродосодержащих материалов, горных пород Земли и космических тел. [c.403]

    Пример. Глицин в смеси аминокислот определяли методом изотопного разбавления. В анализируемый раствор аминокислот ввели 0,1000 г глицина, содержащего радиоактивный изотоп углерода С. Затем из этого раствора выделили определенное количество глицина и на радиометрической установке измерили его активность, получив -4х = 800 имп/мин на 1 г вещества. [c.183]

    Точность измерения чисел переноса в методе движущейся границы определяется точностью отсчета положения этой границы. Обычно для этого используют различие в показателях преломле-ичя исследуемого (КС1) и индикаторного (ВаСЬ) растворов, а положение границы раздела в каждый момент времени регистрируется специальной оптической системой. Для регистрации положения границы раздела можно использовать радиоактивные изотопы соответствующих элементов. Определенными достоинствами обладает вариант метода движущейся границы, в котором используются две изотопные метки изучаемого ионного компонента и растворителя (Ю. П. Степанов, А. И. Горшков, 1980). После пропускания определенного количества электричества фиксируют изменение положения обеих меток, что позволяет сразу определить подвижность изучаемого ионного компонента относительно растворителя в целом и не требует введения описанных выше поправок. [c.73]

    Третий способ основан на определении количества дочернего радиоактивного изотопа, накапливающегося за определенный промежуток времени из материнского  [c.361]

    Изотоп углерода С образуется с постоянной скоростью в верхних слоях атмосферы. Возникает он из атомов азота в результате действия на них космических лучей превращение азота в углерод-14 происходит по реакции, приведенной в предшествующем разделе. Радиоактивный углерод окисляется до двуокиси углерода, которая благодаря непрерывным перемещениям воздушных масс полностью смешивается е атмосфере с нерадиоактивной двуокисью углерода. Равновесная концентрация углерода-14, образующегося в атмосфере под действием космических лучей, равна примерно ЫО , а это значит, что один атом радиоактивного углерода приходится на 10 атомов обычного углерода. Двуокись углерода, как радиоактивная, так и нерадиоактивная, поглощается растениями, фиксирующими углерод в своих тканях. Животные, питающиеся растительной пищей, также накапливают в своих тканях углерод, содержащий 1-10 частей радиоактивного изотопа. После гибели растения или животного радиоактивность углерода в его тканях, определяемая количеством находящегося в них радиоактивного углерода, соответствует доле радиоактивного углерода, содержащегося в атмосфере в условиях равновесия. Однако через 5760 лет (период полураспада углерода-14) половина содержащегося в них изотопа подвергнется распаду и радиоактивность данного материа-ла-уменьшится наполовину. Через 11520 лет останется только четвертая часть первоначальной радиоактивности и т.д. Следовательно, путем определения радиоактивности образца углеродсодержащего материала (древесины, мяса, древесного угля, кожи, рога или других ископаемых остатков растительного или животного происхождения) можно определить число лет, прошедших с того времени, когда присутствующий в данном образце углерод первоначально был поглощен из атмосферы. , - [c.617]


    Детектирование потока нейтронов можно проводить во-первых, непосредственным измерением борными счетчиками во-вторых, по количеству образующегося в детекторе (родий, марганец и т. п.) при ядерной реакции с нейтронами радиоактивного изотопа в-третьих, по возбуждаемому в результате ядерной реакции вторичному корпускулярному излучению, например, определение лития ио вторичным а-ча-стицам и тритонам, образующимся по реакции 1л(/г, а) Н. Подобно этому, по а-лучам или протонам, образующимся при реакциях В (п, а) Ве, N(/1,/ )) С и т. п., можно определить содержание бора, азота п других элементов. [c.365]

    Способ проведения анализа методом изотопного разбавления зависит от типа и состава анализируемой смеси. При выборе способа необходимо учесть, радиоактивным или нерадиоактивным является определяемое вещество. В простейшем случае при определении содержания нерадиоактивного вещества путем разбавления радиоактивным изотопом количество определяемого вещества рассчитывают по следующей формуле [14]  [c.313]

    При определении содержания радиоактивного изотопа в смеси радиоактивных веществ применяют обращенный метод изотопного разбавления . Метод достаточно прост и по выполнению подобен прямому методу. К анализируемой смеси добавляют известное количество нерадиоактивного изотопа определяемого элемента. После тщательного перемешивания часть определяемого вещества выделяют в возможно более чистом виде и измеряют ее активность. Количество вещества в анализируемой смеси рассчитывают по следующей формуле  [c.314]

    Работа с веществами, содержащими меченые атомы. Громадное развитие физики и химии стабильных и радиоактивных изотопов многих элементов создало необозримые возможности для изучения многих научных вопросов также в области органической химии, биохимии, в медицине и др. Пользуясь точными методами обнаружения и определения изотопных веществ, можно решать такие вопросы, которые были недоступны для решения обычными химическими методами. Для проведения таких работ необходимо во многих случаях иметь органические вещества, в молекулы которых введены простые или радиоактивные (рад.) изотопы дейтерий (О), тритий (рад.), тяжелый кислород Ю, сера или (рад.), С (рад.), (рад.) и др. Так как соединения с мечеными атомами очень дороги, а в ряде случаев весьма опасны для здоровья, от химика требуется большая тщательность в работе с очень малыми количествами вещества, часто с применением особых мер предосторожности. Это, однако, пе останавливает исследователей, и подобные работы очень энергично развиваются. [c.398]

    Микроаналитические методы предназначены для определения малых количеств веществ (1—10 мг). Эти методы используют при наличии небольшой анализируемой пробы (например, в биохимии или клинической химии) или в тех случаях, когда из соображений безопасности следует работать с небольшими количествами веществ (радиоактивные изотопы). При проведении микрохимических определений значительно снижаются затраты времени за счет сокращения продолжительности разделений. Методы микроанализа применяют в элементном и структурном анализах. В элементном анализе при помощи микрометодов можно определить содержание основных и добавочных веществ, а также следовых веществ. Микроанализ позволяет исследовать распределение элемента в пробе (локальный анализ). Структурный анализ микропробы применяют обычно в сочетании с методами разделения для определения выделенных отдельных компонентов. Все методы микроанализа предъявляют чрезвычайно высокие требования к однородности пробы (разд. 8.2.1). [c.422]

    В 1940 г. американский химик Мартин Д. Ка1Лен (род. в 1913 г.) открыл необычный радиоактивный изотоп углерода — углерод-14. Некоторое количество этого изотопа образуется в атмосфере в результате бомбардировки азота космическими лучами. Это означает, что все живые существа, в том числе и мы, постоянно вдыхаем некоторое количество углерода-14, который потом попадает в ткани. Американский химик Уиллард Фрэнк Либби (род. в 1908 г.) предложил определять возраст археологических находок, исходя из содержания углерода-14. Аналогичный метод используется при определении возраста земной коры его определяют, исходя из содержания урана и свинца. Таким образом, химия пришла на помощь историкам и археологам. [c.173]

    В научных исследованиях — в химии, медицине, биологии, металловедении и др. — при определении переходов вещества или элемента из одного материала (соединения, раствора, сплава, ткани растения, органа тела и т. п.) в другой также используют радиоактивные изотопы. При этом к химическому соединению, используемому в исследовании, примешивают определенное количество такого же соединения, но содержащего атомы радиоактивного изотопа. Химическое поведение последних практически ничем не отличается от поведения стабильных изотопов. Радиоактивные изотопы своим излучением метят вещество, интересующее исследователя, указывают на его присутствие. Поэтому такой прием обнаружения веществ получил название метода меченых атомов или метода радиоактивных индикаторов. [c.33]

    Определение чисел переноса ионов. Обычные методы определения чисел переноса ионов сводятся к проведению электролиза и последующему химико-аналитическому определению изменения содержания соответствующего иона в приэлектродных пространствах. Обычно чувствительность химико-аналитических методик такова, что определение изменения концентрации требует пропускания значительных количеств электричества, а следовательно, весьма продолжительно. За это время начинает играть существенную роль диффузия продуктов электролиза, искажающая картину изменения концентраций, происходящего за счет электролиза. Это приводит к тому, что химико-аналитические варианты в общем случае продолжительны и мало точны. От этих недостатков в значительной степени свободны радиометрические методы определения чисел переноса. Один из наиболее чувствительных методов предусматривает проведение электролиза в трехсекционной электролитической ячейке. Радиоактивный изотоп вводится в среднее отделение в той химической форме, число переноса которой необходимо определить. Одинаковый химический состав всех трех отделений обусловливает отсутствие процессов концентрационной диффузии. [c.190]

    Эти соотношения дают возможность вычислить количества отдельных изотопов радиоактивного ряда, находящиеся в радиоактивном равновесии с определенным количеством другого изотопа того же ряда, если известны их константы распада или периоды полураспада. Знание весовых количественных соотношений между отдельными изотопами радиоактивного ряда делает возможным вычисление Я, и Г /, для одного изотопа, если значения их для другого изотопа известны. [c.223]

    В случае часто применяемого метода активированных производных аминокислота, подлежащая определению, сначала метится взаимодействием [195] с реагентами, которые содержат устойчивые или радиоактивные изотопы. Затем ее смешивают с избытком немеченого производного аминокислоты и очищают до постоянной молярной концентрации изотопа. Количество w искомой аминокислоты находят по формуле [c.66]

    При определении выхода какого-либо изотопа — продукта деления необходимо учитывать время, прошедшее с момента окончания облучения. Кроме того, следует так расставить химические операции во времени, чтобы другие изотопы этого же элемента минимально влияли на точность радиометрических измерений. Примеры таких расчетов даны в работе [187]. После растворения образца в раствор вводят определенное количество (обычно 10—50 мг) носителя — стабильных изотопов выделяемого элемента. Выделение и очистка радиоактивного продукта с носителем эффективны только при условии полного изотопного обмена между радиоактивными и стабильными изотопами. Это в первую очередь относится к элементам с переменной валентностью (Мо, Ни, J и Се). [c.414]

    В ряде случаев отсутствие указателей уровня жидкости на некоторых аппаратах вынуждает пользоваться весьма кустарным и примитивным методом — замером уровня жидкости с помощью пробных краников. Такое положение, например, имеет место на М1Н0ГИХ установках термического крекинга (эвапораторы, фля-шинги и колонны), так как обычные поплавковые и дифференциальные указатели уровня при высоких температурах быстро за-коксовываются. Вместе с тем в настоящее время существуют вполне надёжные для таких условий работы уровнемеры, основанные на применении радиоактивных изотопов. Определение уровня жидкости в эвапораторе, колоннах и фляшинге с помощью пробных краников приводит к потерям весьма значительных количеств продукта, так как при каждом открытии пробного краника в канализацию сбрасывается несколько литров (иногда и десятки литров) продукта, а число таких открытий составляет не менее 40—50 в сутки. По этой причине внедрение вышеуказанных уровнемеров явилось бы весьма полезным делом. [c.79]

    Известную проблему, особенно в биоаналитической химии, составляет определение выхода, т. е. определение процентного количества соединения после его выделения из, скажем, биологической матрицы. Выход часто определяется с помошью метода внутреннего стандарта, основное требование к которому состоит в том, чтобы он по своим свойствам был максимально близок к определяемому соединению. Очень часто эту проблему решить довольно трудно, что, естественно, влияет на достоверность результатов. Почти идеальными внутренними стандартами являются изотопно-меченные аналоги соединения, использование которых привело к исключительно важной роли масс-спектрометрического обнаружения в количественном газохроматографическом анализе. В этом случае для введения метки применяются стабильные изотопы (чаще всего дейтерированные аналоги), и вследствие высокой разрешающей способности такой системы обнаружения отношение меченого внутреннего стандарта и немеченого анализируемого образца можно определить точно. Химическое различие, обусловленное изотопным замещением, обычно пренебрежимо мало и не влияет на результаты выделения и обработки пробы. Хотя в капиллярной ГХ может наблюдаться небольшое различие во временах удерживания изомеров, меченных Н и н, влияние изотопного замещения на удерживание обычно не проявляется ввиду очень незначительного различия в способности к образованию водородных связей с неподвижной фазой. Как и при применении стандартов, меченных радиоактивными изотопами, определение меченого и немеченого соединений основывается целиком на специфическом методе одновременного обнаружения обеих форм. [c.174]

    Для определения количества лимонной кислоты, адсорбированной затравочными кристаллами гидроксифосфата, была использована лимонная кислота, меченная радиоактивным изотопом С. Количество С-цитрата определяли с помощью сцинтиляционного счетчика Pa kard Tri- arb, погрещность анализа составляла 0,1%. [c.21]

    Одна из важнейших особенностей органических соединений состоит в том, что в состав их молекул обычно входит несколько атомов одного и того же элемента, которые могут по-разному вести себя в различных химических процессах. Использование радиоактивных изотопов позволяет проследить за поведением отдельных атомов органических веществ при химических реакциях, если для исследования взяты вещества, в молекулах которых радиоактивные атомы занимают строго определенное положение. Например, за поведением карбоксильного углерода, входящего в состав молекулы пропионовой кислоты, можно проследить, используя пропио-новую кислоту, содержащую радиоактивные атомы только в карбоксильной группе С2Н5 СООН. Другая группа задач, решаемых в органической химии с помощью радиоактивных индикаторов (определение количеств органических веществ, скоростей расходования или накопления какого-либо продукта и т. д.), не нуждается в использовании соединений, содержащих радиоактивную метку в строго определенном положении. В этом случае возможно применение веществ, состоящих из равномерно меченых молекул или молекул, радиоактивную метку в которых несет любой атом данного элемента. [c.295]

    Гатос [20] показал, что оптимальное игнибирование стали в воде с pH = 7,5, содержащей 17 мг/л Na l, происходит при концентрациях, превышающих 0,05 % бензоата натрия или 0,2 % натриевой соли коричной кислоты. С использованием радиоактивного изотопа в качестве индикатора, на поверхности стали, погруженной на 24 ч в 0,1, 0,3 и 0,5 % растворы бензоата натрия, было обнаружено, соответственно, всего лишь 0,07, 0,12 и 0,16 мономолекулярного слоя бензоата (0,25 нм , фактор шероховатости 3). Эти данные подтверждают полученные ранее [12] результаты измерений в бензоате с использованием индикатора С. Чтобы объяснить, почему столь малое количество бензоата на поверхности металла может увеличивать адсорбцию кислорода или в определенной степени уменьшать восстановление кислорода на катодных участках, требуются дальнейшие исследования. Этот эффект характерен именно для катодных участков на железе, так как при контакте железа с золотом в 0,5 % растворе бензоата натрия восстановление кислорода на золоте, видимо, не замедляется, и железо продолжает корродировать. [c.264]

    Для определения концентрации веществ в большинстве иммунохимических методов к анализируемому раствору, содержащему определяемое соединение и его меченый аналог, добавляют реагент в количестве, намного меньшем необходимого по уравнению (7.12). Как немеченые, так и меченые соединения взаимодействуют с реагентом практически одана-ково, поэтому отношение их концентраций будет одним и тем же в растворе и в связанном состоянии. При этом возможность применения метода во многом определяется доступностью меченого антигена и соответствующих антител. Для введения метки используют различные реагенты радионуклиды, ферменты, красящие вещества, флуоресцентные и хеми-люминесцентные зонды, ионы металлов. До последнего времени в качестве маркеров антител применяли радиоактивные изотопы этот метод назьшается радиоиммунохимическим анализом (РИА). При этом степень [c.298]

    Радиоактивационные методы определения сурьмы основаны на регистрации излучения радиоактивных изотопов, образующихся в результате протекания соответствующих ядёрных реакций с участием нерадиоактивных изотопов Sb, содержащихся в природной смеси. Подробно теория активационного анализа и применяемая аппаратура описаны в работах [159, 374, 485, 738, 839, 1371, 1423, 1509]. Активационные методы определения Sb характеризуются очень высокой чувствительностью и позволяют одновременно с Sb определять ряд других элементов. Для анализа, как правило, требуется небольшое количество анализируемого материала, которое в ряде случаев может быть 1 мкг. Существенным недостатком активационных методов является необходимость наличия малодоступного источника активации и тщательного соблюдения специ- [c.72]

    Метод меченых атомов часто применяют в тех случаях, когда целесообразно использовать для анализа некоторые неполностью протекающие реакции осаждения, экстрагирования и др. Так, например, при определении малых количеств свинца в горных породах нередко получаются несходя-щиеся и неправильные результаты это обусловлено неполным осаждением свинца вследствие растворимости сернокислого свинца. Ошибку можно учесть и исправить следующим образом. После растворения породы в раствор вводят определенное количество радиоактивного изотопа свинца. Анализ продолжают обычным путем, например взвешивая в конце анализа двуокись свинца. Взвешенный осадок растворяют и определяют его радиоактивность. Если при анализе не произошло потерь свинца, измеренная радиоактивность будет равна первоначальной радиоактивности, обусловленной введенным радиоактивным свинцом. Если же после окончания анализа радиоактивность растворенной двуокиси свинца окажется меньшей, это означает, что свинец частично потерян во время анализа размер потерь может быть вычислен путем сравнения с первоначальной радиоактивностью. Подобным же образом могут быть найдены поправки в случаях неполного экстрагирования определяемого элемента и т. п. [c.20]

    Описано применение автоматической системы для многоэлементной экстракции (Шубигер и др.), например для разделения ионов радиоактивных изотопов Н (П), Си(П), МоСУ1), Сс1(11), А8(У), 5Ь(У), Ре(1П) и Со П), экстрагируемых в виде комплексов с ДДТК. Анализом управляют централизованно, включая такие операции, как регулирование pH и проведение реакции окисления-восстановления. Органические растворители, применяемые в этом методе, должны быть тяжелее воды. Анализ в данном случае выполняется быстрее и устраняется воздействие облучений. Повторяя процессы экстракции и реэкстракции и используя метод нейтронного активационного анализа, для ряда матриц можно получить большую селективность и чувствительность определения следовых количеств веществ, чем это достигается с помощью неразрушающей у-спектрометрии с высокой разрешающей способностью. [c.429]

    ИЗОТОПНОГО РАЗБАВЛЕНИЯ МЕТОД, метод количеств. хим. анализа с использ. радиоактивных или обогащенных стаб. изотопов. Особенность метода — возможность проводить количеств, определения при неполном выделении в-ва. В классич. варианте метода с использ. радиоакт. индикаторов определение компонента основано на изменении уд. активности вследствие разбавления в ходе анализа, К анализируемому р-ру добавляют известное кол-во W определяемого в-ва, содержащего радиоактивный изотоп с активностью А и уд. активностью Si = Ajw. После достижения равновесия изотопного обмена между радиоактивными и стаб. атомами из р-ра выделяют тем или иным способом (экстракцией, ионным обменом, осаждением и т. д.) часть определяемого в-ва, измеряют ее массу (спектрофото-метрич., гравиметрнч., титриметрич. или др. методом), радиоактивность и устанавливают уд. активность 5г = = Al w -t- л), где X — исходное кол-во определяемого в-ва. Из ур-ний для Si и 5г можно найти л = г0[(3)/3г) — 1]. Предел обнаружения ограничен чувствительностью измерения массы выделенной доли в-ва и составляет 10" — 10" % по массе. [c.213]

    В связи с тем, что в радиохимических лабораториях проводятся исследования с большим числом различных радиоактивных изотопов (меченых атомов), жидкие отходы могут содержать самые. разнообразные радиоактивные загрязнения. В качестве добавок к жидким отходам, вызывающих выпадение осадков, используют и другие реагенты тринатрийфосфат, сульфиды, двуокись марганца [33], ферроцианид калия [122], ферроцианид никеля пли кобальта [123]. Имеются сообщения о применении в качестве добавки двуокиси титана [124]. Этим методом при определенных значеггия.х pH могут быть из-илечены 8г (99,9%), РЗЭ (99,9%), 2г, ЫЬ (99,8%), но для Сз и Ки коэффициенты очистки низкие (28% ). Выбор необходимой добавки (обычно количества этих ве- [c.78]

    Значительные количества Mg и Са не. мешают определению алюминия. В присутствии 420 мг Mg и 800 мг Са в осадок оксихинолината переходит <0,1 мг Mgn Са. При pH 4,7—4,9 не мешает до 10мг кадмия при pH <4,7 и >4,9 последний мешает сильно. С помощью радиоактивных изотопов показано, что соосаждаются значительные количества 1п, 0,5% Y, e и Se 1945]. Железо осаждается в широких пределах концентраций ацетатов, а цинк осаждается в незначительной степени [542]. [c.40]

    Меченые атомы часто используются при изу чении биологических процессов. С их помощью удалось выяснить, что происходит с аминокислотами в белках (см. гл. 28) и каким образом определенные аминокислоты, входящие в состав пищи, превращаются в другие аминокислоты, а также какова роль в организме третьих аминокислот, очень важных для него, но не синтезируемых в нем. Использование радиоактивного изотопа железа Fe позволило установить функцию железа в крови добавление меченых атомов иода-131 в пищу позволило выяснить скорость накопления иода в щитовидной железе. С помощью меченых атомов иода-131 можно устанавливать места образования саркоматозных опухолей. Эти злокачественные образования поглощают большое количество альбумина, который можно иодировать, а затем следить за его распределением в организме с помощью сцинтилло-метра или счетчика Гейгера — Мюллера. [c.434]

    Определение при помощи радиоактивного изотопа серебра Ag" Исследуемый раствор, содержащий 5—15 мг калия, подкисляют азотной кислотой (pH 4—5), нагревают до 60° С и по каплям вводят избыток 2%-ного раствора натрий-бортетрафенила По охлаждении осадок калий-бортетрафенила отфильтровывают, промывают насыщенным водным раствором этого соединения, затем промывают водой, растворяют в 30 мл ацетона К раствор"у добавляют 3—5 мл 0,1 N раствора AgNOa, меченного радиоактивным изотопом Ag , перемешивают и разбавляют водой до 100 мл Осадок серебро-бортетрафенила отфильтровывают и измеряют активность 10 мл фильтрата [1473] Количество калия вычисляют по формуле [c.113]

    Радиометрическое определение. Пользуясь растворм иодида калия, меченого радиоактивным изотопом можно определять малые количества таллия (684]. [c.115]

    Радиометрическое титрование. К 2 мл анализируемого раствора соли одновалентного таллия добавляют в качестве индикатора невесомос количество радиоактивного изотопа Т1 ° вводят определенный объем титрованного 0,1 N раствора KJ центрифугируют и определяют радиоактивность аликвоты центрифугата. Такие л е исследования повторяют, но с применением других объемов раствора К . [c.115]

    Это обеспечивает практически полное выделение даже субмик-рограммовых количеств радиоактивных изотопов ЗЬ. Однако полное выделение их не обязательно, если определить их выход. Для его определения находят количество выделенной аналитической формы (взвешиванием, титрованием или другим подходящим методом) и оценивают его по отношению к тому количеству, которое могло быть получено в случае полного выделения введенного носителя. В ряде работ [1092, 1312, 1660] описаны методы разделения элементов, рекод1епдуеыые для прид1енения в активационном анализе. [c.75]


Смотреть страницы где упоминается термин Радиоактивные изотопы определение количества: [c.414]    [c.210]    [c.74]    [c.26]    [c.395]    [c.211]    [c.433]    [c.69]   
Методы общей бактериологии Т.3 (1984) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Изотопы определение

Изотопы радиоактивные

Определение абсолютного количества радиоактивного изотопа по (3-излучению



© 2024 chem21.info Реклама на сайте