Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хранение гидрогенизационных топлив

    В данном разделе рассмотрено каталитическое действие металлической меди на окисление дизельного топлива кислородом и влияние содержания серы на окисляемость дизельного топлива. Исследовано влияние адсорбционной очистки, при которой удаляются смолистые вещества и микропримеси, происхождения и сорта дизельного топлива на его окислительную стабильность. Сделана оценка стабильности дизельного топлива по результатам изучения кинетики поглощения О2 с одновременной регистрацией оптической плотности топлива. Рассмотрена кинетика накопления первичных продуктов окисления дизельного топлива. Сопоставлены показатели термоокислительной стабильности дизельных и реактивных топлив, получаемых с применением гидрогенизационных процессов. На базе кинетической модели окисления проведено прогнозирование допустимых сроков хранения дизельного топлива с пониженным содержанием серы при контакте с металлической поверхностью. [c.123]


    Характерно изменение ПК для ароматических углеводородов, содержащихся в топливах Т-б и Т-7. Исходные ароматические углеводороды топлива Т-6 по сравнению с ароматическими углеводородами топлива Т-7 поглощают кислород в количестве, вдвое меньшем, а их оксидаты (после окисления при 150 °С) — на 7з больше. Это совпадает с ранее приведенными данными о более высокой скорости зарождения цепей при температуре выше 100 °С в топливе Т-6. Неуглеводородные соединения, остающиеся в топливах, полученных гидрогенизационными процессами, содержат некоторое количество естественных ингибиторов окисления ( 57.10- моль/л), что сказывается на Ти (см. рис. 2.6), однако их концентрация приблизительно в 100 раз меньше, чем концентрация обычно вводимого промышленного противоокислителя — ионола. Содержание природных ингибиторов тем меньше, чем дольше хранилось топливо, т. е. ингибиторы в процессе хранения расходуются. [c.48]

    В последнее время при.меняют топлива, получаемые смешением прямогонного и гидроочищенного компонентов. Этот технологический прием получения топлив используется, как правило, в тех случаях, когда в прямогонном компоненте сернистые соединения (например, меркаптаны) содержатся в количестве, превышающем требования ГОСТ на реактивное топливо ТС-1. При смешении прямогонного и гидроочищенного компонентов содержание природных ингибиторов в топливе уменьшается и может оказаться недостаточным для обеспечения надежной стабилизации топлив в условиях их эксплуатации и хранения. Поэтому минимальное содержание прямогонного компонента в смесевом топливе должно быть регламентировано так, чтобы в смеси емкость f[InH]o сильных ингибиторов была не менее 2,4-10 моль/л — емкости ингибиторов, вводимых в гидрогенизационные топлива. [c.189]

    При глубоком (продолжительном) окислении гидрогенизационных топлив в условиях хранения могут ухудшиться и другие эксплуатационные показатели повышается коррозионная агрессивность вследствие накопления кислых продуктов, увеличивается склонность к образованию отложений на горячих стенках элементов топливных систем в результате образования смол из продуктов окисления [15, с. 92—95 345 346]. Поэтому антиокислительные присадки, вводимые в гидрогенизационные топлива, должны обеспечивать стабилизацию топлив не только в топливных системах, но и при хранении. При этом важно, чтобы в течение сроков хранения (стандартами установлено 5 лет) присадка сохранилась в топливе в концентрации, необходимой для надежной стабилизации топлива в топливных системах при последующем применении его в авиатехнике. Рассмотрим кинетические закономерности окисления топлив при хранении. [c.244]


    Во-первых, гидрогенизационные топлива, в отличие от прямогонных, не склонны к образованию нерастворимых и коррозионно-агрессивных продуктов при хранении, поскольку производят их гидрогенизационную обработку. Во-вторых, за 10 ч и более при указанных выше температурах окисление гидрогенизационных топлив протекает столь глубоко (Л[02]>1 моль/л), что фиксируемые изменения в топливе имеют очень далекое отношение (как по глубине, так и характеру продуктов) к процессам в условиях естественного хранения топлив. В-третьих, описанные методы не прогнозируют реальные сроки хранения топлив, так как, с одной стороны, ни один из методов не пре- [c.252]

    С внедрением гидрогенизационных процессов при производстве реактивных топлив важное значение приобрела защита-топлива от окисления, а также прогнозирование сроков хранения топлив. Это обусловлено удалением при гидрогенизационной обработке из нефтяных дистиллятов гетероатомных соединений, в том числе природных ингибиторов окисления. Поэтому, в отличие от прямогонных, получаемые с применением гидрогенизационных процессов топлива интенсивно окисляются при хранении, а также в топливных системах самолета и двигателя. [c.21]

    Несмотря на то, что при окислении реактивных топлив, полученных гидрогенизационными процессами, твердые осадки не образуются, длительному хранению и применению такие топлива (без присадок) не подлежат. Это связано с тем, что образующиеся гидропероксиды разрушают резиновые технические изделия и герметики, используемые в топливной системе самолетов, а кислотные продукты корродируют конструкционные материалы. [c.54]

    Основной причиной ухудшения эксплуатационных свойств топлив при хранении являются окислительные процессы. Накопление гидроперокеида в гидрогенизационных топливах, не содержащих антиокислительных присадок, делает их чрезвычайно агрессивными по отношению к нитрильным резинам и полисульфидным герметикам топливных систем. При хранении топлив с антиокислительными присадками последние расходуются по реакциям с пероксидными радикалами, что ухудшает совместимость топлив с уплотнительными материалами. В качестве примера в табл. 7.11 представлены результаты испытаний топлив Т-6 и РТ после хранения при 60 °С в течение 50 сут на совместимость с резиной и герметиком по методам, описанным на с. 233 и 241 [ИЗ]. Топлива без антиокислительной присадки настолько окислились при хранении, что резина после испытания в них сломалась. Агрессивность топлив с антиокислителыюй присадкой ионол по отношению к уплотнительным материалам [c.243]

    Современные промыщленные гидрогенизационные топлива содержат в качестве антиокислительной присадки ионол, поэтому для практики наиболее важно определить допустимые сроки хранения стабилизированных топлив. Механизм тормозящего действия ионола заключается в обрыве цепей по реакциям с пероксидными радикалами. [c.246]

    Таким образом, повышенная склонность к окислению топлив, полученных гидрогенизационными процессами, приводящая к образованию нерастворимых в топливе смолистых продуктов, и наличие в топливе высокодисперсных механических примесей с размером частиц <15 мк обусловливают ухудшение термической стабильности таких топлив, ошределяемой в динамических условиях по ГОСТ 17751—72. Для надежного применения топлив, полученных гидрогенизационными процессами, необходимо вводить в них антиокислители, которые позволяют сохранить их качество п при длительном хранении. Следует отметить, что зарубежные спецификации предусматривают введение антиокислителей в реактивные топлива 2]. [c.30]

    Одним из наиболее перспективных методов повышения стабильности реактивных топлив, полученньк гидрогенизационными процессами (гидроочисткой прямогонных дистиллятов и глубоким гидрированием), является введение в топливо антиокислительных присадок [22]. В настоящее время стабилизация гидрогениэационньгх реактивных топлив достигается введением присадок ионол и ОМИ в концентрации 0,003 % мае., что обеспечивает возможность длительного хранения реактивных топлив и надежную эксплуатацию техники с двигателями умеренной теплонапряженности [10]. Однако эффективность указанных присадок резко снижается при температурах вьппе 150 С, которые имеют место при эксплуатации техники с двигателями повышенной теплонаряженности, что связано с недостаточной термической стабильностью этих антиоксидантов [10]. [c.45]

    Реактивные топлива должны такнсе иметь высокую химическую стабильность, т.е. не окисляться и не ухудшать свои 4яэико-химические и эксплуатационные свойства при длительном хранении, в первую очередь, за счет развития в топливах окислительных процессов. Наименее устойчивы против окисления топлива, полученные гидрогенизационными. процессами, из которых при этом удаляются соединения, являющиеся природными ингибиторами окисления [Э,13. Для повышения х -мической стабильности реактивных топлив в них вводят антиокислители и деактиваторы металлов [ .  [c.5]

    Важнейшие области применения гидрогенизационного облагораживания охватывают следующие средние и тяжелые дистил.тятиые продукты дизельные и печные топлива (для снижения соде]1жания серы и коксуемости, улучшения характеристик сгорания, цвета и стабильности при хранении) прямогонные и крекинг-фракции, используемые в качестве сырья для установок каталитического крекинга дистиллятные и остаточные масляные фракции для повышения стабильности, сто1П<ости к окислению, уменьшения кислотного числа. [c.111]



Смотреть главы в:

Окисление и стабилизация реактивных топлив -> Хранение гидрогенизационных топлив




ПОИСК







© 2024 chem21.info Реклама на сайте