Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероатомные соединения

    Гетероатомные соединения нефти [c.67]

    Кроме превращений структурной единицы с ядром, состоящим из ассоциатов асфальтенов, в дисперсионной среде, по мере нагревания, могут сформироваться новые центры дисперсной фазы в виде зародышей ассоциатов полициклических аренов с высокомолекулярными углеводородами и гетероатомными соединениями с функциональными группами и гетероатомами. Вокруг каждого зародыша формируется сольватный слой, из которого происходит переход компонентов в ящю, ведущее к увеличению его размеров. Таким образом, при определенных высоких температурах в нефтяном остатке происходит накопление [c.26]


    В целом эффективность процесса каталитического гидрооблагораживания зависит от двух основных факторов диффузии и активности активных центров катализатора. Диффузия определяется распределением пор катализатора по размерам проходных сечений и распределением молекул дисперсионной среды, сольватной оболочки и частиц ядра ССЕ по размерам. Эффективная диффузия обеспечивается размерами пор, а активность поверхности количеством активных центров и промоторами для каждой реакции превращения гетероатомных соединений. Эти факторы и должны учитываться при разработке эффективных катализаторов. [c.70]

    Несмотря на то что реактивные топлива представляют собой в нормальных условиях гомогенные жидкости, при нагревании, а также при длительном хранении в обьиных условиях в них может образовываться вторая фаза. Она представляет собой в основном продукты окисления, полимеризации и конденсации гетероатомных соединений. Эти образующиеся в топливе соединения, имеющие различное агрегатное состояние и размеры частиц, могут приводить к отрицательным явлениям при эксплуатации авиационной техники, в том числе забивать фильтры, нарушать работу топливо-регулирующей аппаратуры, форсунок, теплообменников, загрязнять топливные баки и др. [c.132]

    Некоторые авиационные ГТД имеют топливные насосы высокого давления, у которых износ трущихся пар (плунжер-шайба, например) очень сильно зависит от качества топлива. Это обусловлено, с одной стороны, конструкцией насосов и используемых для их изготовления металлов, а с другой-значительным изменением противоизносных свойств топлива в зависимости от содержания в нем гетероатомных соединений. [c.154]

    Топливо состоит из углеводородов, гетероатомных соединений (кислородных, сернистых, азотных), растворенных газов, растворен-64 [c.64]

    Исследование индивидуального состава гетероатомных соединений средних и высококипящих фракций нефти вызывает большие затруднения ввиду отсутствия эталонных соединений. Для преодоления этих трудностей иногда осуществляют гидрогенолиз гетероатомных соединений, содержащихся в узких фракциях нефти, так как ассортимент эталонных углеводородов значительно шире ассортимента гетероатомных соединений [2.14]. [c.38]

    Покончив с рассмотрением действия различных реагентов на нефтяные углеводороды, познакомимся с гетероатомными соединениями, входящими в состав нефти. [c.93]

    В результате процессов окисления при длительном хранении топлив в них накапливаются продукты окисления, конденсации и полимеризации углеводородных и гетероатомных соединений. Процессы, происходящие при хранении топлива для судовых ГТУ, аналогичны таковым при окислении дизельных топлив. Склонность к изменению качества или иначе стабильность при хранении топлив для судовых ГТУ оценивают по методу, заключающемуся в определении изменения кислотности и содержания высокомолекулярных продуктов при регламентированных условиях окисления топлива (см. гл. 4). [c.181]


    С внедрением гидрогенизационных процессов при производстве реактивных топлив важное значение приобрела защита-топлива от окисления, а также прогнозирование сроков хранения топлив. Это обусловлено удалением при гидрогенизационной обработке из нефтяных дистиллятов гетероатомных соединений, в том числе природных ингибиторов окисления. Поэтому, в отличие от прямогонных, получаемые с применением гидрогенизационных процессов топлива интенсивно окисляются при хранении, а также в топливных системах самолета и двигателя. [c.21]

    Как отмечалось выше, в процессе гидрогенизационной обработки дистиллятов, применяемой при получении топлив РТ, Т-8, Т-8В, Т-6, основная часть гетероатомных соединений из них удаляется. Однако смолистые вещества, содержащие кислород, серу и азот, содержатся и в топливах гидроочистки и даже глубокого гидрирования, хотя их в 2—3 раза меньше, чем в соответствующих неочищенных топливах [161—163]. В следующем разделе показано, что они обладают небольшим антиокислительным действием. [c.79]

    Гетероатомные соединения — органические вещества, в состав которых входят, кроме атомов углерода и водорода, атомы серы, кислорода, азота и других элементов. Содержание гетеро-атомных соединений в реактивных топливах не превышает 1— 2% (масс.) например, в образце топлива ТС-1 из Туймазинской нефти ж 1,85% (масс.), а в гидрогенизационных топливах их меньше [7]. Влияние гетероатомных соединений на эксплуатационные свойства топлив весьма существенно. [c.13]

    Удаление гетероатомных соединений в целях повышения термостабильности и снижения коррозионной агрессивности топлив достигается гидроочисткой или глубоким гидрированием дистиллятов топлив. [c.16]

    Кислородсодержащие соединения представлены в реактивных гидроочищенных топливах нефтяными кислотами, фенолами, гидропероксидами, смолистыми веществами. В прямогонных керосиновых фракциях кислородсодержащие соединения обнаруживали в количествах до 0,2—0,5% (масс.). Содержание эфиров, спиртов и гидропероксидов ничтожно мало. При этом необходимо отметить, что в нефтях и нефтепродуктах 90—95% кислорода приходится на долю смолистых соединений [10, 20]. Кислородсодержащие соединения в отличие от прочих гетероатомных соединений не только переходят из исходной нефти, но и накапливаются в нефтепродуктах в процессе их хранения за счет окисления углеводородов. [c.16]

    При умеренных температурах, например в процессе хранения прямогонных топлив, отрицательное воздействие гетероатомных соединений не отмечается. Это объясняется тем, что продукты окисления гетероатомных соединений оказывают на окисление углеводородов ингибирующее действие [12, 170], снижают интенсивность окисления (см. рис. 5.6). [c.159]

    При пропускании топлив через слой алюмосиликата они освобождаются от значительной части гетероатомных соединений (обессмо-ливаются), при этом противоизносные свойства их значительно ухуд- [c.65]

    При исследовании противоизносных свойств авиационных топлив, необходимо наряду с изучением описанных выше зависимостей изучить механизм взаимодействия топлива с металлами контактируе-мых поверхностей. Многочисленные наблюдения за поверхностями трения, изучение состава продуктов износа, процессов, происходящих в тонких поверхностных слоях металлов, позволяют составить следующую общую схему взаимодействия топлив с металлами в процессе трения. Как только металлический образец погружается в топливо, на его поверхности адсорбируются поверхностно-активные молекулы гетероатомных соединений (кислородных, сернистых, азотистых), а также молекулярный кислород и образуется тонкий граничный слой. Этот слой может воспринимать сравнительно большие, нормальные к поверхностям трения нагрузки и легко деформируется при приложении тангенциальных напряжений. При контактировании двух металлических поверхностей между ними будет находиться граничный слой из адсорбированных молекул. Если контактная нагрузка, скорость относительного перемещения и объемная температура топлива невелики, то тонкая граничная пленка выполняет роль эффективной смазки, а поверхностные слои окислов металла подвергаются в основном упругой деформации, причеМ деформацией охвачены очень тонкие слои окислов. При многократном упругом передеформировании окисных слоев происходит их усталостное разрушение, а на месте разрушенных окислов образуются новые вследствие окисления металла кислородом, всегда присутствующим в топливе или выделяющимся при разложении гетероатомных кислородных соединений. [c.70]

    Рассмотрены основные закономерноста гидрирования и гидро-генолиза гетероатомных соединений, кинетика и катализаторы гадро-обессеривания, деметаллнзацин, гидрокрекинга нефтяных остатков. Описаны оборудование промышленных установок н пртемы зашиты катализатора от загрязнения. Приведены перспективные схемы комплексной переработки нефтяных остатков с использованием каталитического облагорахтаания. [c.2]

    И гидрокрекинга, приводит к тому, что в остатках перегонки нефти увеличивается концентрация смол, асфальтенов, тяжелых металлов, механических примесей и других тяжелых компонентов и гетероатомных соединений, включающих серу, азот и кислород. Увеличивается соответственно плотность, молекулярная масса, вязкость и ухудшаются прочие показатели качества. В такой ситуации для увеличения ресурсов светлых нефтяных топлив требуется все больше единовременных и текущих затрат на процессы облагораживания. Это относится и к котельному топливу. Вьптуск их малосернистых марок из нефтей с высоким содержанием серы возможен при внедрении процессов облагораживания компонентов этого топлива [2]. [c.8]


    Расход водорода при гидрообессеривании остатков изменяется в пределах 80-140 м= /м , причем на реакции гидрогенолиза гетероатомных соединений расходуется лишь около 30%, а остальная часть идет на гидрирование ароматических соединений углеводородов, смол и продуктов расщепления [5, 6, 7, 8]. Производительность катализатора в зависимости от содержания в сырье металлов и асфальтенов при глубине удаления серы 70-93% изменяется в пределах 5,2-1,2 м /кг [9,-10], в то время как на дистиллятном сырье эта величина составляет до 40 м /кг. Низкие показатели по производительности катализаторов свидетельствуют о том, что проблема защиты их от дезактивации является весьма важной. Для подавления коксообразования на катализаторе вьшуждены прибегать к повышению давления водорода в реакторе. Это ведет к увеличению металлоемкости аппаратуры и возрастанию потребления электроэнергии [11,12]. [c.9]

    В основе всех существующих и разрабатьшаемых процессов каталитического гидрооблагоргживания нефтяных остатков положены детализованные исследования особенностей их компонентного состава, структурных особенностей и физико-химических свойств гетероатомных соединений и примесей неуглеводородного происхождения. [c.14]

    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    Отмечено также, что чем ниже давление, тем вьпие должна быть начальная температура для достижения одинаковой степени превращения. Например, если при 16 МИа начальная температура 360 С, то при 7 МПа требуется 375 °С. Это, в свою очередь, усугубляет повышенное коксообразование, что ведет к увеличению дезактивации катализатора. Проблема снижения рабочего давления в реакторах процессов каталитического гидрооблагораживання является предметом многочисленных исследований и поисков. Несмотря на множество патентов на процессы с пониженным давлением, в литературе до сих пор пока нет публикаций, свидетельствующих об их практической реализации. Для рассматриваемых процессов, реакции которых протекают с очень большими диффузионными осложнениями, влияние давления практически равнозначно проблеме создания эффективного катализатора, стойкого к дезактива--ции отложениями углерода и металлов и обладающего повышенной селективностью в основньгх реакциях гидрогенолиза гетероатомных соединений. [c.67]

    Приведенные выше краткие сведения о входящих в состав нефтяных остатков химических соединениях, свидетельствует о крайней сложности их химического состава. Наличие широкой гаммы углеводородов различных гомологических рядов, разнообразный качественный и количественный состав гетероатомных соединений с широким диапазоном изменения физико-химических свойств, позволяет отнести нефтяные остатки к особому классу нефтяных дисперсных систем. Исходя из того, что основные химические реакщш каталитического гидрооблагораживання осуществляются на активной поверхности полидисперсных катализаторов с развитой структурой пор, наличие сведений лишь о компонентном составе сырья недостаточно. Эффективность процесса, который в общей форме может быть представлен, как результат взаимодействия двух дисперсных систем сырье — катализатор, зависит от эффективной диффузии молекул к активным центрам и в целом определяется тем, насколько эффективно используется вся активная поверхность катализатора. [c.21]

    Для подбора условий, обеспечивающих наиболы ю эффективность процесса, весьма важны сведения о структуре остатков, о действующих силах межмолекулярного взаимодействия, кинетических и гидродинамических размерах молекул и структурных фрагментов, распределении гетероатомных элементов по основным группам компонентов. В конечном итоге от уровня информации по вьш1еуказанным факторам зависит правильность формулировки основных направлений поиска наиболее эффективной каталитической системы, сочетающей высокую активность со структурой пор, обеспечивающей доступ гетероатомных соединений сырья к активным центрам во всем объеме зерна катализатора. [c.21]

    Расчеты размеров высокомолекулярных сера органических соединений с известной структурной формулой, исходя из длин углов связей и Вандерваальсовых радиусов атомов, показывают, что они могут изменяться в пределах от 0,5 до 1,0 нм, а для металлпорфиринов от 0,7 до 1,2 нм. Если учесть то, что в нефтяных остатках эти соединения могут входить в состав более сложных молекул с разветвленной структурой или находиться в составе структурных фрагментов смол и асфальтенов, фактические размеры их можно ожидать более высокими, чем расчетные, например, как указанно вьиие, по данным ГПХ остатков. Более точные данные можно было бы получить тем же методом ГПХ при наличии узких фракций концентратов гетероатомных соединений, выделенных препаративно из нефтяных остатков, но таких данных пока не опубликовано. [c.40]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    Компоненты дисперсионной среды, обладая низкой молекулярной массой, диффундируют вглубь поры н, адсорбируясь на активных центрах подвергаются соответствующим химическим превращениям (гидрирование слабых связей, гидрогенолиз гетероатомных соединений, термическая деструкция). По мере протекания процессов термодеструктив-ного гидрирования компонентов сольватной оболочки и ядра ССЕ дисперсионная среда обогащается низкомолекулярными соединениями и осколками асфальтенов и смол с гетероатомами, которые с течением времени подвергаются аналогичным превращениям, как и первичные гетероатомные соединения дисперсионной среды. [c.69]

    Главным достоинством такого способа подачи сырья в слой катализатора является возможность организации пенного режима течения - наиболее эффективного с точки зрения массопереноса. Пенный режим реализуется при определенных критических значениях скорости подачи газа. При увеличении скорости выше критических значений режим течения становится пульсирующим, что приводит к снижшню наблюдаемых скоростей преврашения гетероатомных соединений. Таким образом, преимущества восходящего потока исчезают только при высоких скоростях газа, при которых режим течения становится подобным режиму течения, характерному для нисходящего потока. Критические значения скорости течения газа обычно мевее 0,11 кг/(м > с), т. е. на уровне типичных для процессов гидрооблагораживання остатков, осуществляемых в реакторах со стационарным слоем и нисходящим направлением подачи водородсырьевой смеси (64). [c.93]

    Реактивные топлива Т-2, ТС-1, Т-1, содержащие прямогонные компоненты, не подвергнутые гидрогенизации, умеренно термостабильны и имеют, как правило, достаточно длительные допустимые сроки хранения-5 лет и более. Высокотермостабильные же топлива РТ, Т-8 и Т-6 представляют собой углеводородные фракции, весьма глубоко очищенные от гетероатомных соединений. Но в результате удаления из них при производстве естественных антиокислителей они обладают повьпценной окис-ляемостью, что приводит к усилению агрессивного воздействия на резину, а также к накоплению в них продуктов окисления и быстрому ухудшению термической стабильности. Поэтому допустимый срок хранения указанных топлив без антиокислительных присадок в ряде случаев значительно меньше, чем сроки хранения топлив Т-1, ТС-1 и Т-1. [c.168]

    В современные термостабильные топлива добавляют антиокислительные присадки, в частности ионол. Эффективность таких присадок зависит от углеводородного состава топлива, а также от количества и состава примесей гетероатомных соединений в нем. В связи с этим в комплексе методов стабильность при хранении оценивают следующими показателями  [c.168]

    Многочисленные исследования и практические данные показали, что температура, при которой обеспечивается нормальная работа агрегатов топливных систем газотурбинных двигателей на топливах типа ТС-1 и Т-1, не превышает 100—120 °С, в зависимости от типа летательного аппарата. Ограничение топлив Т-1 и ТС-1 по температуре применения объясняется наличием в них природных соединений, содержащих кислород, серу и азот (гетероатомных соединений). При температурах выше 100— 120 °С топлива в топливных системах достаточно интенсивно окисляются растворенным кислородом, содержание которого достигает в них 4—5% (об.). При наличии в топливе природных гетероатомных соединений их окисление сопровождается появлением осадков и смолистых соединений, отлагающихся на фильтрах и в агрегатах топливорегулирующей и топливоподающей аппаратуры, в топливомасляных радиаторах, топливопро- [c.13]

    Как уже указывалось, современное реактивное топливо не должно образовывать отложений в топливных системах во всем диапазоне рабочих температур двигателей, включая двигатели сверхзвуковых летательных аппаратов. Это достигается удалением из нефтяных дистиллятов гетероатомных соединений различыми способами очистки. [c.14]

    Топлива РТ, Т-8, Т-8В и Т-6 вырабатывают с применением каталитических гидрогенизационных процессов [18, 20, 21] гидроочистки (топлива РТ и Т-8), гидрокрекинга (Т-8В), гидро-деароматизации (Т-6). В указанных топливах гетероатомные соединения содержатся в незначительных количествах, поэтому топлива характеризуются малой склонностью к образованию отложений в топливных системах и низкой корроэнонной агрессивностью. Например, осадок при испытании по методу ГОСТ 11802—66 в этих топливах не пре шнз Т мг/100 в-то время как в топливе ТС-1 он достигает 18 мг/100 мл, а в топливе Т-1-—35 мг/100 мл. Потеря массы медной пластинки при оценке коррозионных свойств этих топлив по ГОСТ 18598—73 не превышает 1 г/м , а в топливах ТС-1 и Т-1 она достигает 10 и 3 г/м соответственно. Малая склонность к образованию отложений и низкая коррозионная агрессивность гидрогенизационных топлив позволяет использовать их на сверхзвуковых самолетах с температурой топлива в топливных системах существенно выше 100°С (критической для прямогонных топлив). [c.17]

    Гетероатомные соединения. В гидрогенизационных реактивных топливах гетероатомные соединения содержатся в незначительных количествах. В прямогонных керосиновых фракциях нефти содержится в среднем до Р/о гетероатомных соединений, в молекулах которых присутствуют атомы серы, кислорода и азота. Многие из этих соединений являются природными ингибиторами окисления топлив поэтому целесообразно вкратце рассмотреть состав гетероатомных соединений. Сернпстые соединения прямогонных керосиновых фракций нефти любого основания представлен.ы соединениями одних и тех же классов меркаптанами (тиолами), сульфидами, дисульфидами, тиофенами [15]. В товарных реактивных топливах обнаружены также окисленные серпистные соединения кетосульфоксиды н кетосульфоны [149—151]. [c.78]

    В результате удаления смол, т. е. удаления гетероатомных соединений, как следует из данных табл. 5.4, резко увеличивается образование пероксидов, а также продуктов их разложения. В связи с малым содержанием в гидроочищенных и гидрированных топливах природных ингибиторов окисления в них вводят антиоксидант — ионол — в количестве 0,003% (об.). Эф- [c.159]


Смотреть страницы где упоминается термин Гетероатомные соединения: [c.65]    [c.65]    [c.68]    [c.15]    [c.22]    [c.47]    [c.69]    [c.93]    [c.142]    [c.36]    [c.189]    [c.3]    [c.13]    [c.159]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.132 , c.181 , c.250 , c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ ароматических и гетероатомных соединений нефти Бродский

Выделение гетероатомных соединений средних фракций

Выделение гетероатомных соединений средних фракций (В. Г. Спиркин)

Выделение, свойства и применение гетероатомных соединений нефтей и нефтепродуктов

Высокомолекулярные гетероатомные соединения

ГЕТЕРОАТОМНЫЕ СОЕДИНЕНИЯ И МИНЕРАЛЬНЫЕ КОМПОНЕНТЫ НЕФТИ ГЕТЕРОАТОМНЫЕ СОЕДИНЕНИЯ НЕФТИ

Гетероатомные соединения и минеральные компоненты нефти

Гетероатомные соединения нефти

Гетероатомные соединения реакции

Гетероатомные соединения синтез

Гетероатомные соединения средних фракций

Гетероатомные соединения средних фракций (В. Г. Спиркин)

Гетероатомные соединения, смеси

Гетероатомные соединения, смеси определение

Гетероатомные соединения, смеси схема разделения и анализа

Гриньяра реактивы, реакции с гетероатомными соединениями

Другие типы реакций гетероатомных соединений

Наиболее важные факторы в химии гетероатомных соединений

Номенклатура гетероатомных соединений

Определение группового и гомологического состава смесей углеводородов и гетероатомных соединений

ПРИЛОЖЕНИЕ II. Валентные углы и межатомные расстояния для гетероатомных и сходных соединений

Первичная фрагментация алифатических гетероатомных соединений

Первичная фрагментация ароматических гетероатомных соединений

Реакции нуклеофильного замещения галогенпроизводных гетероатомных соединений

Сметанин, JI. П. Медведкова, В. Г. Заикин Масс-спектрометрический анализ углеводородов и гетероатомных соединений нефти



© 2025 chem21.info Реклама на сайте