Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ингибиторы природные

    Ингибитор - природное или синтетическое вещество, угнетающее активность ферментов и в результате нарушающее нормативный обмен веществ в организме. [c.5]

    Характерно изменение ПК для ароматических углеводородов, содержащихся в топливах Т-б и Т-7. Исходные ароматические углеводороды топлива Т-6 по сравнению с ароматическими углеводородами топлива Т-7 поглощают кислород в количестве, вдвое меньшем, а их оксидаты (после окисления при 150 °С) — на 7з больше. Это совпадает с ранее приведенными данными о более высокой скорости зарождения цепей при температуре выше 100 °С в топливе Т-6. Неуглеводородные соединения, остающиеся в топливах, полученных гидрогенизационными процессами, содержат некоторое количество естественных ингибиторов окисления ( 57.10- моль/л), что сказывается на Ти (см. рис. 2.6), однако их концентрация приблизительно в 100 раз меньше, чем концентрация обычно вводимого промышленного противоокислителя — ионола. Содержание природных ингибиторов тем меньше, чем дольше хранилось топливо, т. е. ингибиторы в процессе хранения расходуются. [c.48]


    Поскольку спирты не обладают ингибирующим действием, природные ингибиторы в топливах нафтенового основания представляют собой, очевидно, фенолы. Следует отметить, что в дифференциальных спектрах остатка смеси фракций и фракции 3 обнаружена довольно широкая полоса, которую можно отнести к карбонильной группе сложных эфиров (v=1740 см ). В дифференциальном спектре остатка, определенного относительно исходного топлива эта полоса отсутствует, т. е. по содержанию сложных эфиров топливо и остаток различаются мало. Вместе с тем по окисляемости топливо и остаток существенно различны. Кроме того, интенсивности пика, соответст- [c.85]

    Механохимические явления играют особую роль в определении свойств каучука после его переработки на вальцах с точки зрения изменения пластичности или гомогенизации различными ингредиентами. Перерабатываемый каучук всегда содержит ингибиторы — природные или специально добавленные (к синтетическим каучукам), выполняющие различную роль в стабилизации свойств после полимеризации или при торможении процессов усталости и старения. Свободные радикалы, образовавшиеся при вальцевании, способны реагировать с молекулами этих ингибиторов. Поэтому смеси с идентичным исходным составом в зависимости от применяемого режима механической переработки и температуры имеют различные структуры и своеобразное поведение при их дальнейшей переработке. [c.64]

    Для медицинской практики важно представление об антиметаболитах, которые являются конкурентными ингибиторами природных субстратов (точнее, ферментов, превращающих эти субстраты). Сульфаниламидные препараты вытесняют парааминобензойную [c.74]

    Из изложенного следует весьма важный вывод в сложных смесях углеводородов, которыми являются нефтяные топлива и масла, могут присутствовать соединения, являющиеся эффективными ингибиторами окисления. Подобные соединения получили название естественных или природных ингибиторов, в отличие от искусственных ингибиторов, специально вводимых в топлива и масла для повышения их противоокислительной стабильности. Следовательно, процесс окисления топлив и масел в начальной стадии относится к так называемому ингибированному окислению, в котором одновременно с зарождением цепей протекают [c.39]

    С развитием процессов селективной очистки масел становится несомненным присутствие в маслах природных ингибиторов и важность роли, которую они играют в стабилизации масел рафинаты обладают меньшей антиокислительной стабильностью, чем неочищенные масла. Точного тождества природных ингибиторов с каким-либо классом соединений не установлено, однако в основном их можно классифицировать как фенольные и сернистые соединения. [c.87]


    Значительная разница защитных свойств образцов 1 и 2 дизельного топлива зимнего в соленой воде связана с различной технологией их получения. Образец 1, выработанный прямой перегонкой из малосернистых бакинских нефтей, имеет относительно высокое содержание природных кислородсодержащих соединений, проявляющих свойства ингибиторов электрохимической коррозии. Образец 2 получен с применением процесса гидроочистки, при котором в значительной степени уда- [c.109]

    С внедрением гидрогенизационных процессов при производстве реактивных топлив важное значение приобрела защита-топлива от окисления, а также прогнозирование сроков хранения топлив. Это обусловлено удалением при гидрогенизационной обработке из нефтяных дистиллятов гетероатомных соединений, в том числе природных ингибиторов окисления. Поэтому, в отличие от прямогонных, получаемые с применением гидрогенизационных процессов топлива интенсивно окисляются при хранении, а также в топливных системах самолета и двигателя. [c.21]

    Вывод о наличии в топливах ингибирующих примесей не противоречит рассмотренным в предыдущем разделе экспериментальным данным об инициированном окислении топлив, где природные ингибиторы в топливе обнаружены не были. При автоокислении топлив, содержащих ингибитор, в течение периода индукции инициирование осуществляется в основном по реакциям зарождения цепей. Время (т), в течение которого ингибитор вырабатывается , определяется с одной стороны его емкостью /[1пН]о, с другой — скоростью зарождения цепей о т=/[1пИ] o/Vio- [c.83]

    Из рассмотренных данных следует также, что для предотвращения ускоренного старения резиновых деталей топливных насосов авиадвигателей топливо должно быть стабилизировано в такой степени, чтобы исключить протекание окислительных процессов в агрегатах топливной аппаратуры. В прямогонных топливах это обеспечивается природными ингибиторами окисления, в гидрогенизационных — достигается введением антиокислительной присадки ионола в концентрации 0,003—0,004 /о (масс). При использовании топлив, получаемых смешением прямогонного и гидроочищенного компонентов, содержание прямогонного компонента в смеси таково (не менее 30%), что присутствующий в ней природный антиокислитель по стабилизирующему действию не уступает ионолу в концентрации 0,003— 0,004% (масс.). [c.233]

    Из таблицы следует, что для данного топлива параметр Ь мало зависит от фракционного состава, а большие т характерны для высококипящей фракции топлива Т-6 и остатка от разгонки. Очевидно, природные ингибиторы, содержащиеся в топливе Т-6 нафтенового основания, имеют достаточно высокую температуру кипения и концентрируются при разгонке топлива в высококипящих фракциях. Иначе распределяется ингибитор [c.84]

    Вследствие разной температурной зависимости у,о для топлив нафтенового основания (топливо Т-6, образцы 1—4) при эксплуатационных температурах ( 100°С) выше, чем для топлив парафинового основания (топливо РТ и Т-8, образцы 5—9). Прн температурах хранения (50°С и ниже) наоборот, скорость зарождения цепей в топливах парафинового основания выше чем в нафтеновых. Скорости зарождения цепей в топливе Т-6, содержащем природный ингибитор (см. с. 84), и в топливе обессмоленном (без ингибитора) одинаковы. [c.90]

    Если для ингибитора в топливе неизвестны f и [InH] (например, для природных ингибиторов в прямогонном топливе), то, измеряя V я X при разных vi, рассчитывают а по формуле а =(и—Vi)x. При длинных цепях (v lO) параметром Vi можно пренебречь. [c.143]

    Эффективность ингибиторов окисления в топливах, для которых характерна кинетика II типа, несколько выше, вероятно, вследствие дополнительного ингибирующего действия природных ингибиторов окисления. [c.185]

    ПРИРОДНЫЕ ИНГИБИТОРЫ ОКИСЛЕНИЯ [c.185]

    Прямогонные реактивные топлива стабилизированы природными ингибиторами окисления )[294]. На рис. 5.18 и 5.19 показана кинетика окисления прямогонных топлив ТС-1 и Т-1 в присутствии инициатора. Окисление протекает [c.185]

    В последнее время при.меняют топлива, получаемые смешением прямогонного и гидроочищенного компонентов. Этот технологический прием получения топлив используется, как правило, в тех случаях, когда в прямогонном компоненте сернистые соединения (например, меркаптаны) содержатся в количестве, превышающем требования ГОСТ на реактивное топливо ТС-1. При смешении прямогонного и гидроочищенного компонентов содержание природных ингибиторов в топливе уменьшается и может оказаться недостаточным для обеспечения надежной стабилизации топлив в условиях их эксплуатации и хранения. Поэтому минимальное содержание прямогонного компонента в смесевом топливе должно быть регламентировано так, чтобы в смеси емкость f[InH]o сильных ингибиторов была не менее 2,4-10 моль/л — емкости ингибиторов, вводимых в гидрогенизационные топлива. [c.189]

    Рассмотренные данные позволяют предположить, что природные сильные Ингибиторы в прямогонных топливах представляют собой продукты окисления слабых ингибиторов, в частности сернистых соединений. В пользу этого свидетельствует элементарный состав сильных ингибиторов, выделяемых из прямогонных топлив адсорбцией на оксиде алюминия [161]. [c.191]


    Когда в эксплуатации применялись только прямогонные топлива, стабилизированные природными ингибиторами, испытания топлив на совместимость с резиной сводились к оценке влияния на резину углеводородного состава топлива и примесей в нем. С этой целью образцы резины (в напряженном или ненапряженном состоянии) выдерживали в контакте с топливом в герметично закрытых контейнерах (практически при отсутствии в них воздуха — окислителя) при заданной температуре в течение определенного времени. После выдержки определяли физико-механические параметры резины прочность при растяжении, относительное удлинение, набухание, остаточную деформацию. И хотя при длительном контакте углеводороды разных классов по-разному действуют на резину [337], нитрильные резины в [c.233]

    Как следует из данных табл. 7.5, топлива существенно различаются по воздействию на резину. Между результатами натурных и лабораторных испытаний наблюдается хорошая корреляция [339]. Наименее агрессивны по отношению к резине топлива, содержащие ингибиторы окисления ТС-1 прямогонное, содержащее природные ингибиторы окисления (см. с. 184), и топлива с антиокислительной присадкой. При натурных испытаниях указанных топлив дефектов РТИ не обнаружено. При испытании по лабораторному методу понижения пределов прочности резин в этих топливах либо не наблюдается, либо они незначительны (не более 20% от исходных значений). [c.235]

    Как видно из графика влагосодержания природного газа, количество влаги зависит от давления и температуры. При контакте газа с водой повышение температуры или снижение давления увеличивает влажность газа. Понижение температуры прп постоянном давлении уменьшает влажность вследствие конденсации влагн. На этом и основана осушка газа охлажденнег. . Нижний предел температуры охлаждения газа ограничивается условиями гидратообразования. Этот метод используется и установках НТС с впрыском ингибиторов гидратообразования п для предварительного удаления основного количества влаги при иримепеннн других методов осушки. [c.139]

    Топлива существенно различаются по действию на герметик. Топлива, не содержащие стабилизатор, более агрессивны к герметику, чем топлива, содержащие антиокислительные присадки или природные ингибиторы окисления. Особенно агрессивны топлива, в которых присутствуют (до испытания) гидроперокси- [c.242]

    Если в гидрогенизационных топливах присутствует природный ингибитор окисления, кинетика окисления описывается [c.245]

    Многие образцы нативных нефтяных асфальтенов проявляют значительную ингибирующую способность в различных реакциях, протекающих по свободно-радикальному цепному механизму, в том числе в процессах термической, фото- и термоокислительной деструкции [1068, 1069] и полимеризации [1067]. Кинетические методы исследования позволяют охарактеризовать эту способность ВМС несколькими количественными параметрами константами К, скорости взаимодействия ингибирующих групп с активными центрами (свободными радикалами), числом присутствующих типов ингибиторов, концентрацией ингибирующих групп различных типов и др. Найдено, что в составе нефтяных ВМС может содержаться два — три, реже четыре типа ингибиторов, характеризующихся величинами К, более 100, 30—50 и 5— 15 мл/моль-с соответственно. В высокосернистых нефтях иногда обнаруживаются ингибирующие центры и с еще более высоким уровнем активности (до 640 мл/моль-с в нефти месторождения Кара-Арна, Казахстан), превышающим стабилизирующую способность синтетических ингибиторов. Такое повышение активности, по-видимому, связано с синергическим эффектом, проявляемым сернистыми соединениями [1070]. Суммарная концентрация природных ингибиторов может достигать 0,28 моль/кг нефти или 1,6 моль/кг ВМС. [c.203]

    Для топлива Т-6, содержащего природный ингибитор с/[InH] о = = 5-10-е моль/л, продолжительность окисления до глубины 10 моль/л при 60 °С составит [c.245]

    Экспериментальную проверку рассмотренного выше способа прогнозирования допустимых сроков хранения проводили на топливах Т-6 и РТ, содержащих природные ингибиторы окисления [ИЗ]. Получить опытные данные по кинетике расходования ионола в товарных образцах топлив Т-6 и РТ при содержании ионола 0,003—0,004% (масс,) в условиях хранения затруднительно, так как опыт пришлось бы вести несколько лет. [c.249]

    Величины / [1пН]о природных ингибиторов в топливах Т-6 и РТ были измерены по кинетике автоокисления топлив (см. [c.249]

Таблица 7.14. Значения кинетических параметров и емкость природного ингибитора в пробах топлив после хранения Таблица 7.14. <a href="/info/1376645">Значения кинетических параметров</a> и емкость природного ингибитора в пробах топлив после хранения
    Таким образом, в топливах, получаемых прямой перегонкой нефти, содержатся сильные природные ингибиторы, превосходящие ионол по емкости (когда его вводят в концентрации 0,004%), но уступающие ему по эффективности тормозящего действия. В указанных топливах кроме ингибиторов, обрывающих цепи окисления, присутствуют медленно расходуемые ингибиторы, разрушающие пероксиды. Так как сильные ингибиторы удаляются из топлива при его очистке путем адсорбции на оксиде алюминия, можно полагать, что они являются составной частью адсорбционных смол, примерный состав которых описывается формулой i2H2oOmSo,4No.o3 ([52]. Ингибиторы, разрушающие пероксиды, при такой очистке остаются в топливе, поэтому нельзя считать, что такие ингибиторы являются продуктами окисления сильных ингибиторов, как при окислении, например, ароматических аминов и некоторых аминофенолов. [c.49]

    При получении, транспортировке и хранении топливо контактирует с металлической поверхностью и подвергается окислению, при этом окраска его изменяется. Образцы дизельного топлива, взятые для исследования, окрашены от слабо-желтого до темного цвета. (Зкисление этих образцов без предварительной адсорбционной очистки протекает с индукционным периодом, что свидетельствует о наличии в топливе эффективных (сильных) ингибиторов природного происхождения, после индукционного периода поглощение кислорода происходит с постоянной скоростью (рис. 4.7, 4.8). Как правило, устойчивость топлив к окислению зависит от их химического состава, особенно от содержания ароматических и гетероатомных соединений, выступающих в качестве природных ингибиторов. Природные ингибиторы окисления имеют достаточно высокую температуру кипения и концентриру- [c.131]

    Нефтяной парафин должен предварительно очень хорошо очищаться, чтобы удалить содержащиеся и нем природные ингибиторы окис гения, которые могут или полностью затормозить процесс окисления илн спльно его замедлить. Такими ингибиторами являются в первую очередь серусо-держащие соединения и фенолы, которые можно удалить, например, очисткой разбавленной азотной кислотой или безводным хлористым алюминием. [c.162]

    Необходимо отметить, что реакция смолообразования авто-каталитична она имеет индукционный период, который может укорачиваться при прибавлении к дистилляту перекисей или удалении из него природных ингибиторов [50]. Чувствительные олефины и диолефины реагируют с кислородом, образуя гидроперекиси. Реакция, вероятно, идет по следующей схеме  [c.76]

    Бензин, полученный в результате крекинга Содержание непредельных углеводородов, вес. % Малеиновое число г 1г/100 г Содержание природных ингибиторов, % триокси- бензола Содержание серы. % Индук- циоииый период мин [c.226]

    Исследованные бензины содержали практически одинаковое количество непредельных углеводородов (по йодному числу), но значительно различались по содержанию природных ингибиторов. Полученные результаты свидетельствуют о том, что эффективность фенбльных соединений, содержащихся в бензинах, чрезвычайно мала. Длительность индукционного периода окисления бензинов из туймазинской и бакинских нефтей составляет всего лишь 145—> 190 мин при значительном содержании фенольных соединений. Высокая эффективность фенольных соединений в бензинетермического крекинга эхабинского мазута, очевидно, обусловлена строением кислородных соединений эхабинской нефти. [c.227]

    Помимо важного практического значения, исследование окисления топлив представляет теоретический интерес, так как в отличие от сравнительно простых модельных систем, используемых, как правило, для научения закономерностей окисления органических соединений, топлива представляют собой сложную смесь углеводородов (гидрогенизационные топлива) и ге-тероатомных соединений (прямогонные топлива), выполняющих роль природных ингибиторов окисления. [c.7]

    Гетероатомные соединения. В гидрогенизационных реактивных топливах гетероатомные соединения содержатся в незначительных количествах. В прямогонных керосиновых фракциях нефти содержится в среднем до Р/о гетероатомных соединений, в молекулах которых присутствуют атомы серы, кислорода и азота. Многие из этих соединений являются природными ингибиторами окисления топлив поэтому целесообразно вкратце рассмотреть состав гетероатомных соединений. Сернпстые соединения прямогонных керосиновых фракций нефти любого основания представлен.ы соединениями одних и тех же классов меркаптанами (тиолами), сульфидами, дисульфидами, тиофенами [15]. В товарных реактивных топливах обнаружены также окисленные серпистные соединения кетосульфоксиды н кетосульфоны [149—151]. [c.78]

    Наличие периодов иидукции на кинетических кривых автоокисления топлив объясняется присутствием в топливах природных ингибиторов, оставшихся в небольших количествах после гидрогенизационной обработки дистиллятов. На кинетических кривых автоокисления топлив, из которых ингибирующие примеси удалены адсорбционной очисткой на силикагеле, индукционные периоды не наблюдаются. Экспериментальная прямая в координатах (Л[02]) —( исходит из начала координат (см. рис. 4.4, кривая 5). [c.82]

    По параметру Ь образцы топлив Т-6 не отличаются, однако они имеют неодинаковые т и, следовательно, /[1пН]о. Меньшие т и /[1пН]о наблюдаются у топлив, которые хранились более длительное время, видимо, при хранении топлив природный ингибитор расходуется. Образцы топлив РТ и Т-8, выработанные на разных НПЗ, при одинаковых температурах имеют близкие значения Ь, которые в 2—2,5 раза ниже, чем у топлива Т-6. С понижением температуры различия в коэффициентах Ь для топлив РТ, Т-8 и Т-6 возрастают. Таким образом, в режиме развитой автоускоренной реакции окисляемость топлива Т-6 [c.83]

    В табл. 7.8 [341] приведены результаты измерения твердости герметика после контакта с топливами ТС-1, Т-8, РТ, не содержащих антиокислительной присадки, а также РТ с 0,003% (масс.) присадки ионол в емкости, куда имел доступ кислород воздуха при 80 °С. В прямогонном топливе ТС-1 и в топливе РТ, содержащем ионол, твердость герметика не меняется в течение 50 ч. В топливах РТ и Т-8 без антиокислительных присадок твердость герметика за это время существенно уменьшается, причем в топливе РТ быстрее, чем в топливе Т-8. Измерение содержания гидропероксидов в пробах топлива показывает, что в топливе ТС-1, содержащем природные ингибиторы окисления, и в топливе РТ с антиокислительной присадкой в этих условиях гидропероксиды не образуются, а в топливах РТ и Т-8 без присадок протекает процесс окисления, сопровождающийся накоплением гидропероксидов, которое в топливе РТ протекает интенсивнее, чем в топливе Т-8 (см. табл. 7.8). [c.237]

    В результате удаления смол, т. е. удаления гетероатомных соединений, как следует из данных табл. 5.4, резко увеличивается образование пероксидов, а также продуктов их разложения. В связи с малым содержанием в гидроочищенных и гидрированных топливах природных ингибиторов окисления в них вводят антиоксидант — ионол — в количестве 0,003% (об.). Эф- [c.159]

    Ингибитор окисления ионол добавляют к гидроочищенному топливу РТ и гидрированным топливам Т-8В и Т-6, поскольку при гидрогенизационной обработке из данных топлив удаляются природные ингибиторы окисления — гетероатомные соединения. [c.196]

    Установлено, что количественные характеристики ингибирующих свойств ВМС весьма закономерно меняются в зависимости от химического типа и метаморфической превращениости нефти в том числе такие параметры, как суммарная концентрация, концентрация и величина К, для наиболее активных ингибирующих центров и др. Максимальные количества ингибиторов и самые активные ингибирующие центры содержатся в молодых, слабо метаморфизованных нефтях из неглубоко погруженных залежей. В ходе катагенетических процессов природные ингибиторы, по-видимому, вырабатываются, в первую очередь наиболее эффективные, и суммарная концентрация их и средняя активность ВМС снижаются вплоть до полного исчезновения ингибиторов в самых древних, глубокопревращенных нефтях (например, кембрийских). [c.203]


Смотреть страницы где упоминается термин Ингибиторы природные: [c.421]    [c.183]    [c.188]    [c.222]    [c.244]    [c.246]    [c.247]   
Переработка нефти (1947) -- [ c.324 ]




ПОИСК







© 2025 chem21.info Реклама на сайте