Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические методы измерения внутренних напряжений

    Физические методы измерения внутренних напряжений [c.236]

    Внутренние напряжения в кристаллических материалах могут быть измерены по изменению параметров кристаллической решетки рентгенографическим и электронографическим методами [274—276]. Описаны и другие физические методы измерения внутренних напряжений [218]. [c.236]

    Экспериментальные методы определения внутренних напряжений в первом приближении можно разделить на механические и физические. Механические методы основаны на измерении деформации образцов в результате проявления усадочных явлений при отверждении полимерных систем или нарушения равновесного напряженного состояния (путем рассечения образцов, рассверловки отверстий и другими способами). Используя законы теории упругости, в частности принцип Сен-Венана, по деформации образцов с учетом их физико-механических показателей можно рассчитать напряжения, вызвавшие изгиб образцов, или напряжения, возникшие до разрушения изделий [62]. [c.42]


    Идеально количественные методы измерения должны учитывать природу, величину и распределение напряжений в образце, однако на практике это оказывается трудно осуществимым. В некоторых случаях при использовании физических методов определяются средние значения и получают качественную характеристику природы и распределения внутренних напряжений. Исследования зависимости физических свойств от внутренних напряжений во многих случаях дают возможность установить количественные соотношения между рассматриваемыми характеристиками и внутренними напряжениями с учетом физической сущности механизма их возникновения. Эти исследования имеют большое практическое значение, так как часто не столь важно знание точной величины или распределения изменяющихся напряжений, как их возможное влияние на поведение материала в процессе формирования и эксплуатации, а также установление корреляции между свойствами материала, на которые влияют внутренние напряжения, и долговечностью. Важным аспектом таких исследований является изучение концентрации напряжений в зависимости от различных физико-химических факторов. Для исследования внутренних напряжений наиболее широкое применение нашли методы измерения оптических, магнитных свойств и электрического сопротивления, а также методы рентгеноструктурного анализа. [c.55]

    Как указывалось в гл. 2, многие физические свойства очень чувствительны к присутствию примесей, и в стандартных учебниках по анализу рассмотрено много примеров применения неизбирательных методов [1]. Однако не все физические свойства можно привлечь для определения следов элементов (понятие следы относится к уровням концентраций менее 0,01%). Во-первых, точность измерения этих свойств не всегда достаточно высока (например, измерения температур замерзания и кипения, теплоты реакци , вязкости, поверхностного натяжения, упругости, скорости звука). Во-вто-рых, в настоящее время многие измерения еще очень сложны как теоретически, так и экспериментально (диэлектрическая релаксация, циклотронный резонанс, магнитоакустическое поглощение, внутреннее трение и свойств сверхпроводимости). Аналогично измерения оптических эффектов в твердых телах, включая люминесценцию, фотопроводимость и поглощение света, не всегда легко обеспечивают получение надежных данных о содержании примесей. В-третьих, другие свойства (например, восприимчивость или ширина линий спектра ферромагнитного резонанса) чувствительны только к определенным примесям в определенных основах. Не существует неизбирательного аналитического метода определения следов элементов, основанного на измерении магнитных свойств, поскольку структура пробы и присутствие компонентов в больших концентрациях по сравнению со следами играют доминирующую роль. В-четвертых, измерения термоэлектрических и некоторых механических свойств (вязкость, напряжение сдвига) можно использовать для подтверждения присутствия или отсутствия примесей, но их редко применяют как основной аналитический метод и поэтому они здесь не будут рассмотрены. Наконец, хотя многие свойства тела зависят от структуры, здесь не будут рассмотрены примеры обнаружения дефектов в кристаллических решетках (нанример, вакансий и дислокаций), поскольку эта тема слишком обширна. [c.376]


    Методы измерения внутренних напряжений можно разделить на два больших класса физические и механические. Механические методы основаны на измерении деформации образца, вызванной внутренними напряжениями. Деформация образца происходит вследствие нарушения равновесия сил и перехода к новому положению равновесия. По значению деформации образца, пользуясь теорией упругости, можно рассчитать значение внутренних напряжений. Нарушение равновесия и изменение формы тела может происходить самопроизвольно или целенаправленно. Первый случай реализуется в нескольких методах, из которых самым распространенным является метод гибкого катода (консольный). На преднамеренном нарушении равновесия основаны методы Калакутского, Давиденкова, Закса. Так, по изменению расстояния между концами распиленного кольца, отрезанного от тонкостенной трубы, можно рассчитать окружные напряжения. Последовательно снимая наружные слои трубы и измеряя диаметр распиленного кольца, можно рассчитать изменение окружных напряжений по толщине. По прогибу полоски, вырезанной вдоль [c.233]

    Повторные контрольные измерения с привлечением других физических методов измерения (акустической твердометрии и магнитно-шумового метода) подтвердили полученные ранее данные о том, что в верхней части арки-компенсатора величина внутренних напряжений близка к пределу текучести, но не изменяется значимо со временем. [c.278]

    Физические методы измерения напряжений основаны на зависимости физических свойств материала от внутренних напряжений. Поскольку к наличию внутренних напряжений чувствительны многие свойства тел (оптические, электрические, магнитные, размеры кристаллической решетки, внутреннее трение, твердость), эта группа методов весьма обширна. Широко применяется оптический метод, основанный на эффекте искусственного двойного лучепреломления, возникающего под действием напряжений. При освещении таких оптически активных материалов поляризованным светом появляется окраска или картина чередующихся полос интерференции, но которым рассчитывают внутренние напряжения [243—253]. Метод оказывается весьма удобным для материалов, обладающих оптической активностью (кристаллов, неорганических стекол, некоторых полимеров). Метод широко применяется для измерения напряжений в различных (стеклянных) деталях электровакуумных приборов [254—260]. В случае слоистых пластиков и стеклопластиков напряжения в связующем также могут быть измерены по двойному лучепреломлению света [261, 263—266]. Поляризационно-оптический метод может быть применен для тонких оптически чувствительных покрытий на непрозрачной подложке, например для электроизоляционных пленок на металлах [206, 262, 267, 270], для которых обнаружено хорошее совпадение значений напряжений с результатами, полученными консольными методами [206]. Иногда, применяя ноляризационно-онтический [221, 271] метод, удается измерять внутренние напряжения в реальных клеевых системах, например в конструкциях из оргстекла, оптического стекла. [c.236]

    Исследование эксплуатационных свойств изделий из фенопластов и изучение влияния режимов их переработки на свойства этих полимеров, проводимые в НИИПМ , являются продолжением работ довоенного периода Подтверждено влияние режимов переработки на свойства изделий . Установлена однозначная зависимость между электропроводностью и диэлектрическими потерями на стадии отверждения смол и содержанием влаги в материале, градиентом летучих и внутренним напряжением между электропроводностью и электрической прочностью Разработан новый метод и прибор для определения твердости пластмасс по глубине погружения шарика, измеряемой относительно верхнего уровня образца в котором на точность результатов измерения не влияет ни толщина образца (до 3 мм), ни шероховатость его поверхности. Для установления связи между физическими свойствами и строением полимерных соединений, рецептурными изменениями композиции и режимами изготовления материала разработан новый прибор — эластометр, который дает возможность проводить испытания, невыполнимые на существующих машинах Эластометр применен для исследования процесса ноликонденсации метилолполиамидных смол путем измерения структурно-механических показателей пленок. В результате измерений получены необходимые данные для управления процессом изготовления пленки с заданными свойствами. [c.293]


Смотреть страницы где упоминается термин Физические методы измерения внутренних напряжений: [c.210]   
Смотреть главы в:

Основы адгезии полимеров -> Физические методы измерения внутренних напряжений

Долговечность полимерных покрытий -> Физические методы измерения внутренних напряжений




ПОИСК





Смотрите так же термины и статьи:

Измерение напряжения

Методы измерения внутренних напряжений

Методы физические

Напряжения внутренние



© 2025 chem21.info Реклама на сайте