Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение полимеров при динамическом нагружении

    В области нехрупкого разрушения полимеров между температурами Тхр и Тс (см. рис. 11.4) рассеяние упругой энергии при росте трещин из-за различных локальных деформационных процессов становится существенным и термофлуктуационный механизм переходит в термофлуктуационно-релаксационный (см. табл. 11.2). Кроме того, механические потери оказывают существенное влияние на динамическую прочность полимеров при циклических нагружениях. Вызываемый ими локальный разогрев в местах перенапряжений ускоряет рост трещин и снижает долговечность и прочность. [c.314]


    В отличие от процесса разрушения при статическом нагружении полимеров в жидкостях, при динамическом нагружении определенную роль в кинетике разрушения играет частота циклов приложения нагрузки. Для выявления эффекта влияния частоты и исключения при этом значительных тепловых эффектов были [c.180]

    При изучении механизма разрушения полимеров, как и всех твердых тел, определяющим является, в каких условиях (в статических при напряжении, постоянном во времени или в динамических при циклическом нагружении образца) осуществляется воздействие напряжения на материал. [c.222]

    Разрушение полимеров при динамическом нагружении [c.227]

    Таким образом, оказывается, что измерения предела прочности не характеризуют в достаточной мере условий разрушения материала, которые определяются структурными изменениями при предшествуюшем разрыву нагружении. Известно лишь очень ограниченное число экспериментов, в которых изучалось изменение вязкоупругих свойств полимера при нагружении до разрушения. Тем не менее имеющиеся результаты весьма интересны. Так, Нильсен [3] при исследовании образцов армированного стекловолокном полиамида обнаружил, что при деформациях, предшествующих разрушению, происходит заметное увеличение тангенса угла механических потерь и снижение модуля упругости. Поскольку частично кристаллические полимеры можно рассматривать как двухфазные системы, естественно предположить, что аналогичные изменения механических характеристик должны наблюдаться также в неармированных частично-кристаллических полимерных волокнах. Поэтому мы решили провести систематическое исследование динамических вязкоупругих свойств таких материалов в условиях, приводящих к разрушению образца. [c.42]

    Подобно металлам, термопласты могут разрушаться при действии циклических напряжений меньших, чем предел прочности при статических испытаниях. Это явление называют динамической усталостью. Оно встречается при эксплуатации вращающихся и вибрирующих полиамидных деталей, таких как пропеллеры и шестерни, подвергаемые продолжительному воздействию циклических напряжений. Число циклов, необходимых для разрушения детали, зависит не только от напряжения, но и от температуры, содержания влаги, степени кристалличности материала и частоты действия напряжения. При высоких частотах нагружения (обычно более 300 циклов в минуту) энергия деформации практически полностью переходит в тепло, в особенности при температурах, при которых для данного материала характерно высокое поглощение. Этот эффект ускоряет разрушение изделия вследствие теплового размягчения полимера. Раз- [c.117]


    Вулканизация каучуков заключается в связывании макромолекул в пространственную сетку, как правило, ковалентными химическими связями, с тем чтобы пластичный, способный течь полимер превратить в резину — эластичный конструкционный материал, обладающий высокой и обратимой деформируемостью, достаточной прочностью и рядом других ценных технических свойств. Одна из важнейших задач вулканизации состоит также в создании резин с высокой долговечностью, определяемой способностью резин противостоять разрушению в условиях тепловых, окислительных, озонных воздействий, а также воздействий солнечной (космической) радиации при одновременном механическом нагружении (статическом и динамическом). [c.102]

    Необходимо изучение закономерностей изменения свойств или закономерностей разрушения полимеров в условиях многократных деформаций. Существует два основных режима нагружения полимеров при испытании на динамическую усталость один из них — это режим ео= сопз( и еср=сопз1 другой режим утомления Оср= [c.207]

    Из изложенного следует, что закономерности динамической и статической усталость резины одинаковы, но статический режим испытания является более мягким по сравнению с динамическим. Неслют-ря на то, что в сгатическил условиях резина находится все время в напряженном состоянии, ее разрушение происходит значительно позднее, чем npi динамических испытаниях, когда резина находится в напряженном состоянии лишь часть времени. Это объясняется, во-первых, тем, что при периодических нагрузках перенапряжения на микродефектах не успевают отрелаксировать за время каждого цикла нагружения, тогда как при статической нагрузке они с течением времени выравниваются и приближаются к равновесному значению Во-вторых, разрушение полимеров при многократных деформациях ускоряется механически активированными химическими ироцесеами . [c.208]

    Op, измеренного стандартным способом. Решающим в этом случае оказывается время, в течение которого полимерный образец находится под нагрузкой. Если это время достаточно велико, то разрушение в ряде случаев может произойти при напряжениях, много меньших Ор. Время от момента нагружения образца до его разрушения называется долговечностью материала. Долговечность т является важной характеристикой прочностп. Обычно при экспериментальном изучении долговечности напряжение поддерживается постоянным (а = onst). Если это условие не выполняется, то временная зависимость прочности при статической нагрузке характеризует статическую усталость. Временная зависимость прочности при динамической (чаще всего периодической) нагрузке характеризует динамическую усталость. Поведение материала в момент разрушения описывают величиной максимальной относительной деформации 8р, имеющей место при разрыве. Величина относительной деформации ер зависит от вида деформации, скорости деформации и температуры и в значительной степени от структуры и физических свойств материала. При хрупком разрушении ер составляет сотые доли процента. При разрушении полимера, находящегося в высокоэластическом состоянии, ер может достигать нескольких сотен процентов. [c.285]

    Атермический механизм наблюдается и при кратковременных нагружениях, когда вероятность тепловых флуктуаций ничтожно мала и процесс разрыва определяется напряженным состоянием полимера (кривая / на рис. 11.5). Критическое напряжение определяется формулой (11.34). При а>ан наблюдается слабая временная зависимость прочности по уравнению, приведенному в табл. 11.2, и графически изображенная на рис. 11.5 (кривая 1). Причиной этой слабой временной зависимости прочности в хрупком твердом теле являются в основном потери второго вида (динамические потери). Очагами разрушения в атермическом меха-,низме являются микротрещины, причем кинетика процесса разру- [c.307]

    Закономерности разрушения и долговечности полимеров при циклических нагрузках рассмотрены в [9 11.32]. Закономерности динамической и статической усталости сшитого эластомера, например, одинаковы (соотношение между числом циклов до разрушения М и максимальным за цикл напряжением о при растяжении Ыа = = сопз1), но статический режим является более мягким по сравнению с динамическим. Несмотря на то что в статическом режиме материал находится все время в напряженном состоянии, его разрушение происходит значительно позже, чем при динамических напряжениях, когда образец находится в напряженном состоянии лишь часть времени. Это объясняется тем, что при периодических нагрузках перенапрял<ения не успевают отрелаксировать за время каждого цикла нагружения, тогда как при статической нагрузке они с течением времени выравниваются. Для пластмасс релаксация перенапряжений связана с микропластической локальной деформацией в вершинах микротрещин. При увеличении частоты и нагружения возмол ен переход от квазихрупкого к хрупкому разрушению. [c.329]


    В заключение необходимо подчеркнуть, что прочность полимеров, как правило, в несколько раз ниже теоретической, что обусловлено наличием дефектов — концентраторов напряжений. Наличие дефектов приводит к тому, что определяемое значение прочности является среднестатистическим. Существует разброс значений прочности и проявляется влияние масштабного фактора на прочность. Теорией, качественно правильно объясняющей закономерности прочности твердых полимеров, является теория Гриффита, отклонения от которой тем больше, чем большая доля упругого напряжения в разрушаемом образце идет на потери, связанные с процессами деформации. Наряду с понятием прочности по Гриффиту существует понятие долговечности, т. е. времени, в течение которого образец разрушается под действием данного напряжения, меньшего чем Ор. Установлена прямая пропорциональность между 1дтр и а для твердых полимеров, малодеформируемых в момент разрушения, и прямая пропорциональность между ]gтp и lga для эластичных полимеров (резин). Аналогичным образом прн динамическом режиме нагружения циклическими нагрузками существует прямая пропорциональность между gNp и ао для твердых полиме- [c.212]

    Статический режим является более мягким но сравнению с динамическим. Поэтому несмотря на то, что в статическом режиме полимер находится все время в напряженном состоянии, его разрушение происходит значительно позже, чем при динамическом режиме, когда образец находится в напряженном состоянии часть времени. Объяснение этому состоит в том, что нри периодических нагрузках перенапряжения (в вершинах микротре-щии или иа микронеоднородностях) не успевают отрелакспро-вать за время каждого цикла нагружения, тогда как при статическом режиме перенапряжения релаксируют до стабильного значения. Более того, при увеличении частоты деформации (или [c.214]

    При различных способах нагружения, не вызывающих разрушения образцов, наблюдаются обратимые высокоэластическая и истинно-упругая деформации, остаточная деформация, эффект размягчения, гисте-резисные и некоторые другие процессы. Указанные явления в ряде случаев взаимно обусловливают друг друга, а деформация резин на стадии испытания является их общим признаком. Деформационные свойства зависят от структуры и связаны с ее изменениями. Это дает возможность на основе деформационных свойств исследовать структуру полимеров. При исследовании деформационных свойств в разных условиях нагружения (статических и динамических) необходимо установить взаимосвязь между напряжением и деформацией. Известно, что эта зависимость для полимеров, находящихся в высокоэластическом состоянии, достаточно сложна вследствие протекания релаксационных процессов. [c.120]


Смотреть главы в:

Основы физики и химии полимеров -> Разрушение полимеров при динамическом нагружении

Основы физики и химии полимеров -> Разрушение полимеров при динамическом нагружении




ПОИСК







© 2024 chem21.info Реклама на сайте