Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры частично-кристаллические

Таблица 67. Теплоты ДЯм и изменения энтропии Д5м при полимеризации с образованием твердого частично кристаллического полимера при 25 °С Таблица 67. Теплоты ДЯм и <a href="/info/12283">изменения энтропии</a> Д5м при полимеризации с образованием твердого частично кристаллического полимера при 25 °С

    Прежде всего надо отметить, что кристаллизующиеся полимеры являются только частично кристаллическими. Согласно существующей в настоящее время концепции о двухфазной структуре полимеров, частично кристаллические полимеры состоят из геометрически совершенных областей, или кристаллитов, окруженных со всех сторон аморфными областями . Поскольку существует определенное распределение кристаллитов по их размерам, то плавление в полукристаллических полимерах неизменно осуществляется в некотором температурном интервале точно фиксированная температура, при которой наблюдается полное исчезновение кристалличности, обычно определяется как температура плавления . [c.288]

    При анализе низкомолекулярной полимеризации ниже используется классический подход, поскольку определение термодинамических функций сырья и продуктов не вызывает затруднений. Процессы получения высокомолекулярных соединений имеют ряд особенностей и рассмотрены отдельно. Для них, как правило, не удается определить термодинамические функции конечных продуктов, поэтому изучают вероятность представительных реакций зарождения и роста полимерной цепи. В связи с этим сочетают термодинамический и кинетический анализы. При получении высокомолекулярных соединений нужно учитывать гетерогенность реакций, причем получаемый продукт может быть частично кристаллическим и охарактеризован лишь средней степенью полимеризации (иногда законом распределения полимера по молекулярной массе). [c.245]

    Основные структурные элементы полимеров — цепные молекулы. Разнообразие их структуры и гибкость обусловлены различными типами молекулярной организации и механического воздействия. Для иллюстрации этого положения будут рассмотрены характерные элементы структуры и надмолекулярной организации аморфных и частично кристаллических полимеров. В литературе широко обсуждаются взаимосвязи между параметрами цепей кристалла (структура и регулярность их укладки), надмолекулярными характеристиками (степень кристалличности, структура кристаллической решетки, образование зародышей структуры, кинетика ее роста, дефекты) и внешними условиями нагружения [1—3], но эти вопросы не входят в основную тематику данной книги. [c.26]

Рис. 8.2. Схематическое изображение влияния напряжения на скелетное колебание частично кристаллического высокоориентированного полимера [5, 36]. Рис. 8.2. Схематическое изображение <a href="/info/1848394">влияния напряжения</a> на <a href="/info/190229">скелетное колебание</a> частично кристаллического высокоориентированного полимера [5, 36].

    В настоящее время обсуждается [91, 92, 100], имеют ли, и в какой степени, ламеллярные кристаллы и частично кристаллические полимеры ту же самую правильно сложенную структуру, как монокристаллы, выращенные из раствора. Используя [c.29]

    Что касается влияния длины и прочности цепей, то натуральные полимеры, где цепи находятся в высокоориентированном состоянии, более предпочтительны, чем другие. Наиболее широко исследуются частично кристаллические волокна. [c.33]

Рис. 2.11. Модели структуры вытянутых частично кристаллических полимеров. Рис. 2.11. <a href="/info/231417">Модели структуры</a> вытянутых частично кристаллических полимеров.
    Как уже отмечалось и показано на рис. 8.2, распределение молекулярных напряжений в частично-кристаллических полимерах имеет максимум, соответствующий, по-видимому, однородно напряженным сегментам цепей (приписываемый кристаллическим областям), и хвост, соответствующий произвольно напряженным цепям (приписываемый высоконапряженным проходным сегментам). Для правильной сэндвич-структуры кристаллических областей, обладающих модулем с, и ориентации цепных осей, описываемой os 0, получен сдвиг частоты [c.233]

    В процессе образования шейки и однородной вытяжки происходит интенсивное побеление многих (прозрачных) полимеров. Природа данного явления связана с пустотами, которые образуются либо в связанном виде внутри трещин серебра (разд. 9.2, гл. 9) или полос сдвига, либо в несвязанном виде распределены в деформируемых элементах объема. Несвязанные пустоты имеются в частично-кристаллических (ПЭ, ПП) и в аморфных полимерах (ПВХ), а также в эластомерах при криогенных температурах (полибутадиеновый каучук и [c.309]

    Для труб из ПВХ с учетом рис. 1.4 с помощью выражения (8.21) получены следующие значения /о = 397 кДж/моль, 7 = 1740-10" м /моль и о=1,7-10 2 с (чисто формальное значение). Следует отметить, что данная группа параметров описывает долговечность ПВХ, несмотря на то что эти данные соответствуют трем различным видам разрушения. Кривые зависимости напряжения от времени неориентированных частично кристаллических полимеров (ПЭ, ПП) при больших значениях имеют участки падения прочности (хорошо известный наклон (рис. 1.5)). Плоские участки кривых (связанные преимущественно с пластическим ослаблением) могут быть представлены значениями С/о — 307 кДж/моль, у = 4390 X X 10 м /моль и 0 = 3-10- ° с, а крутые участки (ослабление путем образования трещины при ползучести)—значениями /о =181 кДж/моль, 7 = 3610-10- м /моль и о = 8-10- с. Для ориентированных частично-кристаллических полимеров Журков и др. [18] сообщают следующие значения параметров  [c.284]

    При растяжении частично кристаллических полимеров в интервале от средних значений коэффициента вытяжки до высоких его значений (3<Я<10) может произойти разрыв цепей [21, 169, 174—178]. Все эти разрывы, по-видимому, соответствуют случаю статического нагружения (гл. 5, разд. 5.2.2 и 5.2.4). Число разрывов становится большим благодаря тому, что присутствие твердых в поперечном направлении кристаллических областей способствует  [c.308]

    За исключением ПК, у неориентированных аморфных полимеров в процессе вынужденной эластичности при растяжении не зафиксирован рост числа разорванных цепей. Данное поведение является результатом различий морфологии цеией. В отсутствие кристаллитов большие осевые усилия, вызывающие разрыв цепей, могут быть получены лишь при наличии трения между проскальзывающими сегментами цепей. Расчетная объемная концентрация разрывов цепей (из-за большого числа проскальзывающих сегментов) намного меньше, чем в частично кристаллических полимерах. Кроме того (ввиду отсутствия эффекта выравнивания микрофибриллярной подструктуры), макроскопическое ослабление материала при растяжении происходит прежде, чем достигаются значения напряжений и деформаций, достаточные для равномерного распределения разрывов цепей. [c.309]

    Предыдущие рассмотрения применимы к однородным изотропным материалам, т. е. к аморфным [61, 198, 200] и частично кристаллическим полимерам со слабо развитой микроструктурой [130]. В этих материалах направленность разрушения более или менее определяется полем локальных напряжений. Во всяком случае, судя по морфологии поверхности разрушения, ничего нельзя сказать о ее микроструктуре. Это не исключает существования определенной глобулярной микроструктуры (гл. 2, разд. 2.1.3), которую можно выявить путем ионного травления [132, 208]. Однако для полимеров с явно выраженной микроструктурой, обусловленной присутствием кристаллитов с вытянутыми цепями и сферолитов, отчетливо выявляются особенности поверхности разрушения. В таких полимерах сопротивление материала распространению трещины сильно зависит от ориентации плоскости разрушения относительно элемента структуры. [c.393]

    Пока лист остается прижатым приложенным к нему усилием, материал изделия охлаждается, так как тепло из него отводится за счет теплопередачи к холодным стенкам формы. Процесс охлаждения не вызывает затруднений при формовании тонкостенных изделий (таких, как чашки, тонкостенные контейнеры) с продолжительностью цикла 1—2 с. Однако стадия охлаждения может оказаться определяющей при переработке листов толщиной 0,25—1,25 см из частично-кристаллических полимеров, для которых характерна невысокая скорость кристаллизации. При переработке листов продолжительность цикла обычно высока, но зато удается формовать крупные изделия диаметром до 4 м. На рис. 1.14 представлены схемы вакуум-формования и вакуум-формования с предварительной вытяжкой плунжером. [c.29]


    Типичная форма температурных зависимостей удельного объема как для аморфных, так и для частично-кристаллических полимеров представлена на рис. 2.4. В табл. 2.1 приведены сведения о темпе- [c.40]

Рис. 3.16. Различные стадии перестройки структуры частично-кристаллического полимера в процессе ориентации. Пояснения в тексте. Рис. 3.16. Различные стадии перестройки структуры частично-кристаллического полимера в процессе ориентации. Пояснения в тексте.
    Механические свойства частично-кристаллических полимеров ниже температуры Т, сильно зависят от их степени кристалличности. Чем выше кристалличность полимера, тем больше его хрупкость. Модуль сдвига высококристаллических полимеров достигает 10- МПа и практически не зависит от времени. При температуре выше Т,п модули частично-кр1 сталлических полимеров измерить трудно, потому что в отличие от аморфных полимеров они превращаются в жидкости, обладающие практически постоянной энергией активации вязкого течения. Только при очень большой молекулярной массе их поведение напоминает поведение резин. [c.258]

    Вязкость частично-кристаллических полимеров ниже Т , не является бесконечной , так как т кие полимеры обладают некоторой податливостью, возрастающей с у.меньшением степени кристалличности. Выше Г, температурная зависимость вязкости подчиняется закону Аррениуса. Некоторые полимеры (например, полиамиды) [c.258]

    Структура твердого вещества во многих случаях складывается не из одинаковых, а из разных структурных единиц, нередко и очень сложных, и не путем одного лишь межмолекулярного взаимо-действия но и при участии межатомных связей, которые, как мы отмечали, могут возникать и разрываться в процессе отвердевания. При этом одни части структуры фиксируются под некоторыми углами по отношению к другим ее частям. Ясно, что о плотнейшей укладке структурных единиц при сколько-нибудь значительном участии в процессе отвердевания ковалентных связей не может быть речи. В таких случаях часто образуются не кристаллические, а аморфные вещества с непериодическим строением или вещества, частично кристаллические, частично аморфные. Не удивительно, что последние чаще всего встречаются среди полимеров, в структуре которых главную роль играют ковалентные связи, а структурные единицы, из которых строятся подобные вещества,— это молекулы и макромолекулы нередко самой разнообразной кон-, фигурации. [c.7]

    Вследствие интенсивного теплового движения макромолекул магнитное окружение протонов, входящих в их состав, достаточно быстро и случайным образом меняется. В результате локальные поля (определяющиеся, в основном, ближайшим окружением) усредняются, что приводит к сужению линии ЯМР-поглощения. Та КИМ образом, по линии ЯМР можно судить о структуре вещества и характере теплового движения в нем. Твердым стеклообразным и частично кристаллическим полимерам свойственны широкие лИ НИИ ЯМР, поскольку подвижность молекул в них заторможена. [c.269]

    Характерной особенностью полимеров является то, что они могут быть полностью аморфными, частично аморфиыми, частично кристаллическими или почти полностью кристаллическими. Можно получить монокристаллы линейного полиэтилена [25, 34]. Очень часто возникает необходимость определить, является полимер частично кристаллическим или полностью аморфным. [c.57]

    Интенсивность диэлектрических потерь р-релаксации мала по сравнению с 7-релаксацией. Она меньше величины, ожидаемой для полярных полимеров при переходе в стеклообразное состояние, даже если полимер частично кристаллический. Химически подобный полимер поливинилхлорид (аморфный почти на 100%) имеет максимум потерь в 100 раз более высокий, чем бтах для ПХТФЭ при [62]. Такое большое различие между двумя интенсивностями р-потерь нельзя объяснить различиями в кристалличности и/или в дипольных моментах. Объяснение этому факту можно найти в различиях тактичности и гибкости этих двух полимерных молекул. [c.399]

    НОЙ емкости с увеличением активности пара. Следует отметить, что такой характер изменения изотерм сорбции наблюдается для всех исследованных гребнеобразных полимеров, независимо от их исходного фазового состояния. Переход от ПМА-4 к ПМА-18, т. е. от аморфных гребнеобразных полимеров к кристаллическим, как видно из рис. 5.19, несколько изменяет сорбционную емкость при р1рз<0,5, что связано с появлением в сорбенте кристаллической фазы, не участвующей в процессе сорбции. Из сравнения 5 при р/р5>0,5 можно высказать предположение, что при этой активности пара и температуре эксперимента ПМА-18 переходит в аморфное состояние. Сопоставление характера изменения интенсивности дифракционных максимумов для образцов, содержащих сорбаты, с изотермой сорбции подтверждает плавление кристаллической фазы ПМА-18 и ПМА-22, происходящее при их насыщении диффузантом. Таким образом, для образцов ПМА-18 и ПМА-22 на изотермах сорбции можно выделить две области состава, в которых фазовое состояние гребнеобразных полимеров различно р/р5<0,5 полимеры частично кристаллические, при р1рз>0,5—-растворы полимера находятся в аморфном состоянии. [c.190]

    Из рис. 1 видно аметное увеличение Я, II вдоль оси вытяжки и уменьшение >,1 в поперечном направлении. В частично кристаллических полимерах ориентация создает высокую анизотропию теплопроводности, ослабляющуюся с понижением температуры. Например, при относительной вытяжке е—13 для полиэтилена высокой плотности 1ц/Х1=10, тогда как при 7 <10 К это отношение составляет 1,5, [c.186]

    Если в стеклообразной совокупности цепей нет регулярного упорядочения или коллоидной структуры, то говорят об аморфном состоянии. Не так давно природа неупорядоченного или аморфного состояния твердых полимеров вызывала оживленную дискуссию и тш ательно исследовалась. Примерно до 1960 г. преобладало представление о том, что в таких изотропных, некристаллических полимерах, как большинство каучуков, стеклообразных полимеров (ПС ПВХ, ПММА, ПК) или частично кристаллических полимеров (ПХТФЭ, ПТФЭ, ПЭТФ), цепные молекулы имеют случайное распределение и что модель статистического клубка, или спагетти , правильно отражает структуры этих полимеров. В последующие годы в связи с развитием рентгенографии аморфных полимеров все большее признание приобретала концепция ближнего порядка цепных молекул. Эта концепция со всей очевидностью следует из сравнения сегментального объема и плотности аморфной фазы, из электронно-микроскопических наблюдений структурных элементов, калориметрических исследований, закономерности кинетики кристаллизации и изучения ориентации полимерного клубка. После 1970 г. в дополнение к световому и малоугловому [c.26]

    Мел<сферолитные границы подобны границам между зернами. Эти приграничные области обогащены низкомолекулярными фракциями, примесями, концами цепей и дефектами. Деформируемость и прочность такой состааной структуры естественно зависит от податливости всех ее компонент. При таком составе податливость (низкие значения упругих постоянных) следует приписать сцеплению границ зерен и свернутых поверхностей ламелл. Сцепление между цепями в ламелле кристалла значительно сильнее межкристаллического взаимодействия. Это обусловливает определенную стабильность ламеллярных элементов при деформировании образца. Поэтому деформативность такого неориентированного частично кристаллического полимера будет сильнее зависеть от природы вторичных силовых связей между структурными элементами, чем от длины и прочности цепных молекул. [c.31]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    Необходимо исследовать, какие из свойств цепи эффективно выражаются с помощью этих модельных представлений деформирования полимеров. Известно, что рассмотренные ранее частично кристаллические образцы являются иоликристалли-ческими твердыми телами, в которых имеются распределенные аморфные области с зачастую плохо определенными границами и столь же нечетко определенным взаимодействием между аморфными и кристаллическими областями. В упрощенном [c.44]

Рис. 2.12. Диаграмма Такаянаги частично кристаллического полимера. Рис. 2.12. Диаграмма <a href="/info/320873">Такаянаги</a> частично кристаллического полимера.
    Неупругое и пластическое деформирование можно рассматривать как следствие последовательного движения дислокаций и смещения связывающих областей. Поворотная модель дает полное молекулярное описание структуры полимера. И на этот раз имеется лишь слабое различие между упорядоченными н неупорядоченными областями. Печхолд указывает, что совершенный кристалл ПЭ может содержать до 4 поворотов на 1000 групп СНг, в то время как в структуре типа расплава их число достигает 200 на 1000. Хотя эта концентрация столь велика, что исключает и ближний, и дальний порядок, какая-то логика в организации пространства, заполненного цепными молекулами, должна сохраниться. Печхолд предложил подходящие модели — сотовую и меандровую (рис. 2.1, в). Он полагает, что последняя модель более вероятна и может существовать в частично кристаллических волокнах (рис. 2.18,6) и в каучуках [11, 14Г]. Упомянутые ранее а-, р- и 7-релакса-ционные переходы объясняются в рамках данной модели движением поворотных блоков, замораживанием вращения сегмента из-за отсутствия свободного объема и существованием поворотных ступеней и скачков соответственно в аморфной и кристаллической областях [11]. Хотя эксперименты по рассеянию нейтронов [100—104] в значительной степени опровергают наличие четкого меандрового упорядочения цепей, предложение Печхолда было в высшей степени плодотворным для изучения структуры аморфных областей. [c.53]

    Бехт и Фишер [2] показали, что свободные радикалы образуются в аморфных областях. Эти авторы обнаружили, что при воздействии напряжения на образцы поликапролактама, набухшие в метакриловой кислоте, не выявляется спектр ЭПР, типичный для радикала полиамида, а вместо него регистрируется полимеризационный радикал метакриловой кислоты. Следовательно, на основании логичного предположения, что набухают только аморфные области, доказано, что свободные радикалы образуются лишь в этих областях. Верма и др. [3] пришли к такому же, не раз подтвержденному выводу путем изучения радикалов, полученных облучением частично кристаллических полимеров. Такие радикалы были получены v-облу-чением во всем объеме пленки ПА-66, т. е. как в аморфных, так и в кристаллических областях. При комнатной температуре Верма получил три, четыре или шесть компонент в спектре в зависимости от ориентации образца в ЭПР-резонаторе в магнитном поле. Он объяснил явную анизотропию спектра тем, что большинство оставшихся радикалов располагается в хорошо ориентированных кристаллических блоках. Если свободные радикалы были получены в том же самом материале путем растяжения последнего, то не было обнаружено заметной анизотропии спектра ЭПР. Очевидно, в данном случае радикалы располагались в местах с достаточно слабой локальной [c.188]

    Необходимая информация о механическом поведении материала была получена путем анализа мест захвата радикалов. Это позволило в предыдущих разделах сделать вывод о том, что механорадикалы образуются именно в аморфных областях частично кристаллических полимеров. Кроме данной проблемы методом ЭПР были исследованы изменения морфологии образца в процессе его механического изготовления. Касумото, Такаянаги и др. [50—51] изучали пленки ПЭ и ПП путем последовательного удаления аморфной фазы материала травлением азотной кислотой. Затем они проанализировали спектры ЭПР, полученные при облучении 7-лучами обработанных подобным образом пленок. Таким образом они смогли связать октет, полученный для ПП, с радикалами, захваченными дефектами внутри кристаллитов, а спектр из девяти компонент — с радикалами в свернутых аморфных поверхностях. Последние являются особенно эффективными местами захвата радикалов. Указанные авторы также проанализировали влияние закалки, термообработки и холодной вытяжки на мозаично-блочную структуру своих пленок. [c.224]

    Пределы линейности рассмотрены в обзорной статье Яннаса [112]. Он делает вывод, что практически для всех полимеров при Т — Гс<—20 К деформация, меньшая 1%, является пределом линейности свойств. Для частично кристаллических полимеров (например, ПП, ПАН, ПЭТФ, ПА-66) предельные значения деформации 0,1—0,4 % будут, по-видимому, справедливы также выше температуры стеклования Тс (даже при [c.280]

    В случае же частично кристаллических полимеров, которые имеют пластическую и хрупкую ветвь кривой зависимости напряжения от долговечности, действуют два различных механизма, из которых, начало роста трещины при ползучести обладает, по-видимому, меньшей энергией активации (181 кДж/моль) и активационным объемом (1,8 нм) . Тот факт, что в ПЭ редко наблюдаются разрывы цепей даже ири высоких аиряжениях и низких температурах в высокоориентированных образцах, заставляет усомниться в том, что механизм начала роста трещины при ползучести включает разрыв цеией. [c.286]

    На основании такого доказательства можно сделать вывод, что во время исходных стадий образования шейки и вытяжки X < 3) частично кристаллических полимеров не происходит разрыва большого числа цепей. Этот вывод полностью соответствует модели Петерлина пластического деформирования частично кристаллических полимеров. Как показано в гл. 2 (разд. 2.2.2), на ранних стадиях пластического деформирования происходит деструкция исходной сферолитной текстуры и ее преобразование в новую микрофибриллярную структуру. В процессе преобразования наиболее сильно нагружены межсферо-литные проходные молекулы, и, вероятно, некоторые из них разрываются. Однако проходные молекулы между кристаллическими блоками обычно не разорваны на данной стадии и служат для образования микрофибриллярной структуры. [c.308]

    ВЫЧИСЛИТЬ ДЛЯ ОДНОЙ молекулы с поперечным сечением q 0,4 Дж/м для П1Л1ЛА-, 2,9 Дж/м для ПЭВП. Слагаемые Ui и U h в (9.13) нельзя точно оценить. Физико-химические данные, использованные для предыдущих и последующих расчетов, собраны в табл. 9.2 для семи частично кристаллических или стеклообразных полимеров. [c.362]

    В первой части данного раздела были рассмотрены частично кристаллические полимеры (ПЭВП, ПП, ПА). Не меньшее внимание в литературе уделяется морфологии поверхности разрушения стеклообразных полимеров. Во многих исследованиях трещин серебра для объяснения их роста и разрушения материала [76—177] используется фрактография. Фрактографиче-скне исследования процессов разрушения ПС описаны в работах [106, 115, 132, 150, 155, 169, 9, 194, 199], ПММА —в работах [61, 66, 197, 200], ПВХ —в работах [198, 208] и ПК — в работе [196]. [c.397]

    Существуют два класса полимеров полностью аморфные и частично-кристаллические. Аморфные полимеры состоят из неупорядоченно-упакованных цепей, состояние которых характеризуется температурой стеклования, выше которой они превращаются из хрупких стеклообразных тел в резиноподобные эластичные вещества. Ниже температуры стеклования статистические молекулярные клубки лишены гибкости, в то время как выше температуры стеклования они становятся гибкими. Частично-кристаллические полимеры ниже температуры плавления состоят из аморфных и кристаллических участков. Аморфные участки реагируют на изменение температуры так, как было указано выше. Кристаллические участки представляют собой кристаллиты, образованные из складчатых цепей. Обычно кристаллические участки имеют морфологию сферо-литов. [c.40]

    Некоторые стеклообразные и частично-кристаллические полимеры (например, полиамид 6, ПП, ПЭТФ) применяют и как пластмассы, и как волокна. [c.41]

    Резины — это твердые тела, имеющие пространственную трехмерную сетку из соединенных между собой полимерных цепей, которая препятствует их течению и обеспечивает при каждом уровне деформации существование определенной восстанавливающей силы. В растворах и расплавах полимеров, так же как и в аморфных участках частично-кристаллических гюлимеров выше температуры стеклования, восстанавливающая сила будет со временем уменьшаться. Иначе говоря, в них при внезапном приложении деформации возникают силы (или напряжения), которые релаксируют во времени. Причину такого поведения объясняет выражение (2.1-3). Абсолютная величина А5 с течением времени уменьшается, так как гибкие, жестко не закрепленные цепные молекулы под влиянием теплового движения вновь возвращаются к статистическим конформациям, преодолевая силы межмолекулярного воздействия, препятствующие сворачиванию в клубок (рис. 2.5). [c.43]

    Нагрев адиабатическим сжатием. Было показано, что плавление полимеров адиабатическим сжатием возможно для таких процессов, как литье под давлением [2]. Рассмотрите этот метод, оценив порядок величин членов уравнения теплового баланса для аморфных (например, ПС) и частично-кристаллических (например, ПЭНП) полимеров. Используйте данные из Приложения А. [c.301]

Рис. VIII. 4. Схематическое изображение линии ЯМР в частично кристаллических полимерах Рис. VIII. 4. Схематическое изображение линии ЯМР в частично кристаллических полимерах

Смотреть страницы где упоминается термин Полимеры частично-кристаллические: [c.44]    [c.49]    [c.364]    [c.391]    [c.41]    [c.282]    [c.274]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.58 ]




ПОИСК







© 2025 chem21.info Реклама на сайте