Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие серы с циклическими углеводородами

    Нагревание серы до 150 °С в насыщенном углеводороде приводит к дегидрированию, сопровождающемуся выделением сероводорода [30, 31]. Для более эффективного осуществления дегидрирования смесь нагревают до 500—700 °С. Получающиеся при этом непредельные соединения вступают во взаимодействие с серой, образуя зачастую серусодержащие циклические соединения. Этан и пропан [32] или этилбензол [33] дают соответственно этилен, пропилен и стирол с хорошими выходами. Из циклогексана и серы при 300 °С образуется бензол [34]. Кроме упомянутых реакций серы с углеводородами известны многочисленные процессы дегидрирования углеводородов и их производных с участием полисульфидов и сульфидов. Например, при кипячении тетралина с полисульфидом образуется нафталин [35], из циклогеКсанола — фенол [36], а при облучении светом смеси дисульфида с тетралином или циклогексаном получаются соответственно нафталин и бензол [37]. Однако при кипячении серы с н-бутаном в качестве основного продукта образуется тиофен [32]. [c.37]


    Интересной особенностью этих реакций сульфирования является то, что соединения с самой различной молекулярной структурой реагируют с удобными для измерения скоростями почти при одной и той же температуре. Так, натуральный каучук, GR-S и бутилкаучук реагируют с серой со сравнимыми скоростями при 140° такие же скорости характерны для сульфирования циклогексена, изобутилена и различных низкомолекулярных полиизопренов. Температура, при которой протекает реакция, практически соответствует температуре перехода циклической восьмиатомной серы из подвижного жидкого состояния в высокомолекулярную линейную форму, существующую в виде вязкой жидкости. Эти факты свидетельствуют о том, что стадией, определяющей скорость, пол ной реакции, является образование радикала в результате разрыва кольца Sg, а не непосредственное взаимодействие молекулы с углеводородом. Как показал Гордон [14], вулканизация каучука буна является реакцией первого порядка, однако связывать это с процессом разрыва серного кольца, не располагая достаточными знаниями о механизме последующих цепных реакций и особенно о механизме реакций [c.197]

    ВЗАИМОДЕЙСТВИЕ СЕРЫ С ЦИКЛИЧЕСКИМИ УГЛЕВОДОРОДАМИ [c.466]

    Сернистые соединения с открытой цепью углеродных атомов, по-видимому, все имеют вторичный характер. Незначительная роль их в нефти по сравнению с высокомолекулярной частью, содержащей серу, внедренную в циклические системы, позволяет рассматривать последние как первичную форму сернистых соединений, образованных углеводородами или другими органическими веществами, пришедшими во взаимодействие с серой. Следовательно, должен существовать какой-то источник серы, который бы мог обеспечить позднейшие реакции с углеводородами. Этот источник серы чаще всего видели в процессе восстановления сульфатов, сопровождающих многие нефтяные месторождения, главным образом в виде гипса. Предполагалось, что при взаимодействии с углеводородами возможно восстановление сульфатов с образованием углекислого газа, сероводорода и воды. Эта реакция, известная в технике в виде содового процесса, по Леблану, идет однако только при высоких температурах, нереальных в нефтяных месторождениях. Затем были открыты различные бактерии, которые при обыкновенной температуре и без доступа воздуха могут восстанавливать сульфаты до сульфидов, гидросульфидов и сероводорода. Механизм этой реакции понимается таким образом, что микроорганизмы, нуждающиеся в кислороде для создания живого вещества бактерий, заимствуют необходимый им кислород из сульфатов, переводя их в различные сульфиды, дающие с водой сероводород и кислые сульфиды по уравнениям  [c.178]


    Состав сернистых соединений, остающихся в нафте после грубой очистки, весьма разнообразен в их число могут входить сероуглерод, бензотиофены и другие циклические соединения серы, дисульфиды, меркаптаны. В связи с этим наиболее рациональным методом практически полного удаления сернистых соединений является их каталитическое гидрирование. Метод очистки основан на каталитическом взаимодействии сернистых соединений с водородом, специально дозируемым в реактор в количестве 75—140 м /кг углеводородов. Процесс проводится в паровой фазе, углеводороды предварительно испаряются в специальных испарителях. [c.266]

    В лабораторных условиях тиофен может быть синтезирован без использования катализаторов, например, взаимодействием трехсернистого фосфора с янтарной кислотой или ее ангидридом серы с этиленом или ацетиленом, реакцией ацетилена с диэтилдисульфидом, дивинилсульфоксидом пиролизом дибутилдисульфида или алкилвинилсульфидов по реакции бутана с серой при высокой температуре. Для этих способов характерен невысокий выход целевого продукта, низкая селективность, образование смолообразных продуктов. Более эффективны способы, основанные на взаимодействии сероводорода с углеводородами, включающими С4-фрагмент, или с фураном, синтезируемым из фурфурола, который в большом количестве вырабатывают из пентозансодержащих отходов сельского и лесного хозяйства и деревообрабатывающей промышленности. Возможен синтез тиофенов путем превращения алифатических и циклических соединений серы. Для получения тиофена и его низших гомологов можно проводить дезалкилирование тиофенов, вьще-ляемых из продуктов переработки каменноугольных смол, высокосернистых сланцев, и из некоторых типов сернистых нефтей или из продуктов их реформирования. [c.157]

    Многие сероорганические соединения, содержащиеся в нефтях, тфмически нестабильны и могут разлагаться в процессе перегонки, образуя продукты, которых не было в исходных нефтях. В процессе перегонки сернистых нефтей всегда наблюдается выделение сероводорода, который может образоваться в результате распада сложных сероорганических соединений или взаимодействия углеводородов нефти с элементной серой. Первый процесс, например для радаевской нефти, начинается уже при 115—120 °С, достигает значительной интенсивности при 190—210 °С и наибольшей — при 350—400 °С. Второй процесс идет при 200—250 °С. Наименее термоустойчивы меркаптаны, ди- и полисульфиды, разлагающиеся при относительно низких температурах более устойчивы сульфиды. Высокая термическая устойчивость характерна для циклических сульфидов и особенно для тиофена. [c.25]

    Использование в химической промышленности синтетического тиофена и его производных затруднено вследствие ограниченности их ресурсов и высокой стоимости. Тиофен и его гомологи можно получить следующими способами взаимодействием ацетилена с сероводородом [81] бутадиена [82—83] или изопентана [84] с элементарной серой диолефина с сероводородом в присутствии алюминия [85] термическим разложением ди-этилтетрасульфида и его аналогов [86] на основе углеводородов и сернистого ангидрида [87] и др. Все эти методы характеризуются сравнительно низки выходом конечного продукта на исходное сырье и побоч1ШМИ реакциями. С хорошими выходами тиофены получают дегидрированием циклических сульфидов. [c.66]

    Элементарная сера растворима в углеводородах, ее содержание в сырых нефтях может составлять 1% и более. Она может взаимодействовать с углеводородами, образуя алифатические (выше 150 °С) и даже циклические (выше 280 °С) серусодержащие соединения. Уже при 200 °С некоторые из этих соединений расщепляются с образованием элементарной серы. Предположение, что элементарная сера образует сероводород по реакции [c.18]


Смотреть страницы где упоминается термин Взаимодействие серы с циклическими углеводородами: [c.6]    [c.550]   
Смотреть главы в:

Химия углеводородов нефти и их производных том 1,2 -> Взаимодействие серы с циклическими углеводородами




ПОИСК





Смотрите так же термины и статьи:

Углеводороды циклические



© 2024 chem21.info Реклама на сайте