Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Величины и константы физико-химических и механических свойств

    ВЕЛИЧИНЫ И КОНСТАНТЫ ФИЗИКО-ХИМИЧЕСКИХ и МЕХАНИЧЕСКИХ СВОЙСТВ [c.7]

    Сложность системы, в которой происходит рост кристаллов кварца, естественно, приводит и к сложной зависимости механических (упругих и неупругих) характеристик физико-химических параметров. Следует отметить, что упругие константы, характеризующие кварц как кристаллический материал, от условий роста зависят незначительно, и, во всяком случае, для кристаллов, выросших не с Очень большими скоростями (<0,4 мм/сут), упругие константы синтетического кварца практически идентичны таковым для природного. Так, например, измерения упругих постоянных Sik резонансным методом показали, что при разбросе между абсолютными значениями величин sih для различных образцов в 0,5—1 % (из-за неточности в ориентировках) отклонения этих величин от таковых для синтетического кварца не превышали 2%. Аналогичные данные были получены при изучении упругих свойств синтетического кварца по скорости распространения упругих ультразвуковых волн. Позднее измерения упругих и пьезоэлектрических констант высококачественных кристаллов были проведены в широком температурном интервале. Измерения показали, что по этим характеристикам высокодобротные синтетические и природные кристаллы идентичны. [c.138]


    Для успешного решения задач по созданию новых материалов и разработки общих принципов управления их физико-механическими свойствами применяется, рожденная в последние 10—15 лет в Советском Союзе, пограничная область науки — физико-химическая механика, объединяющая вопросы реологии (течения), механики, физики твердого тела (молекулярной физики), физико-химических процессов, происходящих на различных твердых поверхностях. Ее возникновение связано с именем академика П. А. Ребиндера. Исследования, проведенные П. А. Ребиндером [16] и нами [2, 3], однозначно указывают на коагуляционный характер образования пространственных сеток в дисперсиях глинистых минералов. Такие системы являются тиксотропными, причем тонкие прослойки дисперсионной среды, т. е. наиболее близкие к поверхности частиц слои гидратных оболочек, оказывают пластифицирующее действие, создавая условия для образования обратимых, хотя и неполных контактов и значительных остаточных, а иногда и быстрых эластических деформаций. С увеличением толщины прослоек между частицами дисперсной фазы по местам контактов, например за счет адсорбирующихся поверхностно-активных веществ, имеет место понижение прочности системы на сдвиг, т. е. ее разжижение и потеря тиксотропных свойств. Установлено, что изменение величин структурно-механических констант и энергии связи Ее (условный модуль деформации) зависит от кристаллической и субмикроскопической структуры минералов, рода обменных катионов и др. Управляя лиофильными, в данном случае гидрофильными свойствами дисперсных минералов, можно получать коагуляционные структуры их водных дисперсий с необходимыми механическими (деформационными) ха- [c.6]

    ОЭА — жидкости различной вязкости, на стадии переработки они служат временными пластификаторами каучука. Характер изменения реологических характеристик каучуков вязкости, величины крутящего момента, констант уравнения Оствальда — де Вила и энергии а тивации вязкого течения при введении ОЭА — аналогичен изменению этих параметров при использовании обычных пластификаторов [68]. Однако в отличие от последних введение ОЭА вызывает не только снижение вязкости резиновых смесей, но и улучшение физико-механических свойств резин благодаря тому, что в процессе вулканизации в результате привитой полимеризации ОЭА превращаются в жесткие сетчатые образования, химически связанные с эластомером. [c.27]


    Он может быть истолкован с помощью механической модели материала, которая должна быть несколько сложнее рассмотренных ранее (рис. 3.78). В частности, сухое трение должно быть заменено трением через тонкий слой очень вязкой жидкости. С целью физико-химического толкования этих и др. реологических параметров необходимо установить причины появления пластических и прочих свойств, установить зависимость величины констант от состава и структуры деформируемой среды, вьывить пределы применимости тех или иных законов течения и т. д. Для этого необходимо определить физико-химическую сущность самого процесса деформирования дисперсных систем, которая связана, прежде всего, с понятием структура дисперсной системы и явлением структурирования. Следует иметь в виду, что не все упомянутые выше параметры, в том числе максимальная вязкость г)шах, на самом деле характеризуют исследуемый материал, несмотря на их достаточно широкое применение в научной и технической литературе, а также в программных продуктах ЭВМ для моделирования течения различных жидкостей. Вьиснение причин того или иного поведения дисперсных систем на основе их теоретических моделей, а также смысла и области применения различных параметров реологических законов составляет содержание последующих четырех подразделов. В частности, будет показано, что величина максимальной вязкости зависит от конструктивных параметров приборов, на которых она измеряется. [c.676]

    Не останавливаясь на многих методах, которые могут быть с большим или меньшим успехом применены для этих целей, укажем на то, что между механическими свойствами угля и особенностями его структуры, определяемыми физико-химическими методами, существует определенная зависимость. Например, степень набухания угля в метиловом спирте находится в непосредственной связи с модулем упругости. На основании тер модинамиче1ского уравнения было вычислено значение поверхностного давления при адсорбции образцами углей паров метилового спирта. Кроме того, определялось линейное расширение при адсорбции. На этой основе определялась константа, характеризующая упругие свойства угля, и найдена связь между модулем Е и линейным расширением. Оказалось, что модуль упругости, полученный расчетным путем и определенный механически, выражался величинами одного и того же порядка [7]. [c.247]

    С ГЛ. 6). Из школьного курса. химии вы должны были усвоить понятия химических символов, атомных весов и молярных величин, получить представление о периодической системе элементов и химических формулах, узнать о динамическом равновесии, растворимости, кислотно-основных и окислительно-восстановительных реакция.х, о константах равновесия, основах современной оиисательной химии, природе химической связи и о связи между строением и свойствами молекул. Предполагается также, что из школьного курса физики вы должны были получить представление о волновой и корпускулярной теориях света (соотношение Е = /IV), о законе Кулона (Е = д21г ), существовании и свойствах электронов, ядерной модели атома, кинетической энергии (равной ту2/2), силе, давлении, механическом имяульсе и абсолютной температуре. Предварительное или параллельное изучение физики в институте, несомненно, поможет извлечь из данного курса химии гораздо большую пользу. В средней школе вы должны быти научиться решать простые алгебраические уравнения, записывать с помощью алгебраических символов задачи, сформулированные обычным языком, и после их решения делать выводы снова в описательной форме. Начиная с гл. 6 предполагается, что вы уже прослушали или слушаете параллельно курс вычислительной математики. [c.9]


Смотреть страницы где упоминается термин Величины и константы физико-химических и механических свойств: [c.139]   
Смотреть главы в:

Свойства редких элементов издание 2 -> Величины и константы физико-химических и механических свойств

Свойства редких элементов -> Величины и константы физико-химических и механических свойств




ПОИСК





Смотрите так же термины и статьи:

Механические величины

Физико-механические свойства



© 2025 chem21.info Реклама на сайте