Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переработка углеводородных газов в две стадии

    Углеводородные газы (природные, попутные, коксовый) содержат примеси — сернистые соединения, способные отравлять катализаторы, вызывать коррозию и загрязнение аппаратуры. Одной из первых стадий переработки газов для синтеза аммиака является очистка от сернистых соединений. В промышленности применяют несколько способов очистки газа от сернистых соединений абсорбционный, мышьяково-содовый, сухой очистки активным углем, каталитический, очистки поглотителями на основе окиси цинка. [c.46]


    Современные газоперерабатывающие заводы представляют комплекс крупных технологических установок, предназначенных как для подготовки газа к его дальнейшему транспорту и использованию, так и для получения сжиженных углеводородных газов, а также для переработки конденсатов газоконденсатных месторождений. На рис. 5.4 представлена структурная схема газоперерабатывающего завода (без стадий выделения этана и редких газов). [c.82]

    Современные схемы переработки углеводородных газов требуют npe t-варительного разделения их на отдельные фракции и технически чистые компоненты. Эта операция большей частью является наибо.лее дорого-стояш ей стадией всего технологического нроцесса. [c.190]

    Далее газожидкостный поток поступает в контактор 2, заполненный насадкой (например, кольцами Рашига), или в змеевиковый абсорбер. При контакте гидроокиси железа с сероводородом, находящимся в газе, происходит извлечение НгЗ с образованием твердого осадка сульфида железа. В контакторе 2 поддерживают большую скорость газового потока (более 0,5 м/с), вследствие чего происходит вынос жидкой фазы в сепаратор 3, где происходит разделение потоков.. Чистый газ, пройдя каплеуловитель, направляется в газопровод, а отработанный раствор через насос-турбину 9 поступает в дегазатор 4, где вследствие снижения давления (до 0,5—О, " МПа) выделяются растворенные в поглотителе углеводородные газы. После дегазатора 4 раствор сульфида железа подается в регенератор 5, где он контактирует с кислородом воздуха, подаваемым компрессором 8. В процессе регенерации при давлении 0,5— 0,7 МПа сульфид железа окисляется до гидроокиси железа, при этом выделяется сера, которую в виде пены выводят из верхней части регенератора 5 и собирают в пеносборнике 6. Отрегенерированный поглотительный раствор собирают в емкость 10, из которой насосом-турбиной он подается в газовый поток на стадию очистки. Из пеносборника серный концентрат отфильтровывают на фильтре 7 и направляют на дальнейшую переработку (получение чистой серы, серной кислоты и пр.).. [c.36]

    В промышленных установках тех лет применяли трех- и четырехступенчатые схемы переработки угля [63]. На стадии жидкофазной гидрогенизации паста — 40% угля и 60 /о высококипящего угольного продукта с добавкой железного катализатора — подвергалась воздействию газообразного водорода при температуре 450—490 °С и давлении до 70 МПа в системе из трех или четырех последовательно расположенных реакторов. Степень конверсии угля в жидкие продукты и газ составляла 90—95% (масс.). Поскольку экономичные методы регенерации катализаторов в то время не были разработаны, в большинстве случаев использовали дешевые малоактивные катализаторы на основе оксидов и сульфидов, железа. После прохождения системы реакторов и горячего сепаратора при температуре 440—450 °С циркуляционный водородсодержащий газ и жидкие продукты отводили сверху. Затем в холодном сепараторе газ отделялся от жидкости и после промывки возвращался в цикл в смеси со свежим водородом. Жидкий продукт после двухступенчатого снижения давления для отделения углеводородных газов и воды подвергался разгонке, при этом выделяли фракцию с температурой конца кипения до 320—350 °С и остаток (тяжелое масло, его употребляли для разбав.чения шлама гидрогенизации перед центрифугированием). [c.79]


    При обработке природных углеводородных газов, в состав которых входит H2S, такие схемы практически не используют, потому что в газах регенерации абсорбента H2S разбавлен, как правило, СО2 и углеводородами, что затрудняет последующую переработку этих газов. Это привело к тому, что технологические схемы щелочной абсорбции H2S стали совмещать с методами окисления сульфидной серы. Окисление сероводорода (сульфидной серы) можно проводить как на стадии абсорбции его, так и на стадии регенерации отработанных растворов. [c.115]

    Нельзя сказать, чтобы образование углерода при терм че-ском крекинге было принципиально нежелательным, так как пар вместо свежего сырьевого потока реагирует с углеродистым осадком. Однако образовавшийся в процессе частичного окисления углерод иногда представляет собой химически инертную сажу. В этом случае она выносится из реактора потоком генераторного газа, отделяется от него и рециркулируется. Больше углерода получается при переработке тяжелого жидкого сырья, которое из-за высокого содержания сернистых и других загрязняющих соединений газифицируется в установках частичного окисления. Эти соединения не мешают протеканию процесса, так как иа стадии окисления нет катализаторов, которые бы при этом отравлялись или засорялись. Благодаря длинным углерод— углеводородным цепям и комплексным молекулам тяжелое жидкое сырье разлагается на более простые молекулы, которые часто полимеризируются к твердому углероду. [c.95]

    Особенность всех углеводородов, отличающихся друг от друга структурой и молярной массой,— их способность подвергаться одним и тем же химическим превращениям при идентичных технологических условиях. Общепринято исключение стадии сепарации и переработки смесей углеводородов по технологии, при которой конечный продукт конверсии может быть получен из всех или большей части компонентов этой углеводородной смеси. По этой причине в качестве сырья для производства этилена, других олефинов, ацетилена, водорода, синтетического и городского газов обычно используют смеси СНГ (в пределах от этана до пентана). [c.237]

    Вовлечение в переработку высокосернистого нефтяного сырья приводит к увеличению концентрации сероводорода в углеводородных газах до 60% и более [15]. Позтому возникает необходимость в малотоннажных передвижных установках для их переработки. В работе [16] описан процесс получения из таких газов полимерной серы, находящей широкое применение в резинотехнической и шинной промышленности, без стадии моноэтаноламиновой очистки. [c.132]

    Антропогенные источники поступления в окружающую среду. Сюда относятся самые разнообразные области промышленного производства. Выбросы РЗЭ проникают в воздушную среду производственных помещений при различных стадиях технологического процесса их получения и переработки, а также при их промышленном использовании. Так, при загрузке и выгрузке концентрата из реакторов, фильтров, печей, при работе выпарных чаш, экстракторов, электролизеров, в результате функционирования устройств некоторых видов оборудования открытого типа, при наличии неплотностей в местах присоединения трубопроводов к емкостям, при открытой транспортировке, а также при упаковке и складировании, Спасский в значительной части более чем 350 проб, воздуха установил присутствие РЗЭ в концентрациях 20—90, а на некоторых участках 100 мг/м и выше. При этом 50—70 % пыли составляли частицы размером до 2 мкм. Особенно интенсивному неблагоприятному воздействию паров, газов и аэрозолей РЗЭ подвергались аппаратчики. При использовании полирита концентрация его в определенные моменты достигает десятков мг/м, хотя в промежутках между вскрытием мешков с полиритом и немедленной последующей загрузкой его в бункера уже через 15— 20 мин после окончания этой операции содержание последнего в воздухе рабочей зоны становится незначительным и определяется на уровне 0,5—1,2 мг/м . Также в незначительном количестве (0,18—0,24 мг/м ) оксиды Ьа, Се, Рг и N(1 присутствуют в составе аэрозоля, образующегося в воздухе рабочей зоны при прокалке катализатора крекинга и гидрокрекинга нефтепродуктов (Спасский, Лашнев). При этом раствор РЗЭ в разведении 0,2—0,4 % не оказывал выраженного повреждающего действия на кожные покровы работающих. Тарасенко и др. обнаружили содержание оксида Се (IV) в воздухе рабочей зоны на уровне 20 мг/м и более. РЗЭ в небольших количествах (до 0,2 мг/м ) присутствуют в составе аэрозоля в воздушной среде производственных помещений при модифицировании ими чугуна. При разных технологических методах производства V из буровых вод Замчалов и др. обнаружили загрязнение воздуха рабочей зоны иттрием в концентрации 78,6 мг/м . Источником присутствия РЗЭ в составе атмосферных аэрозолей могут также служить процессы сжигания на промышленных предприятиях различного рода углеводородных топлив. В различных типах и фракциях угольной пыли содержание РЗЭ составляет 5с 1,1—6,3 мкг/г. Се 20,0—43,0 Ей 0,2—0,4 УЬ О— 3,0 Ьи 0,9—2,1 мкг/г (Манчук, Рябов). [c.254]


    Процессы переработки нефти и газа претерпели в своем развитии как качественные, так и количественные изменения, вытекающие из задач развития народного хозяйства нашей страны. В настоящее время в нефгегазоперерабатывающей и нефтехимической промышленности широкое применение находят совмещенные процессы, для которых характерно использование многофункциональных аппаратов с одновременным протеканием стадий реакции, тепло- и массопереноса. Особенно актуально использование многофункциональных аппаратов в малогабаритных малотоннажных установках переработки углеводородного сырья для доведения показателей качества целевых продуктов до требований стандартов. [c.6]

    Переработка природного и попутного газов в азотоводородную смесь состоит из нескольких стадий. Первоначально получают гааопую смесь, состоящую в основном т Нг. СО, СОг, N2. Эта стадия называется конверсией углеводородных газов. Затем идет стадия конверсии СО, в результате которой происходит почти полное превращение СО по реакции СО- НэОч На- -Н-СОг+О. Далее следуют стадии очистки конвертированного газа от СО2 и остаточного содержания СО. В результате получают азоговодородную смесь, тщательно очищенную от катализа торных ядов и подготовленную для синтеза аммиака. [c.61]

    Секция 400 - газой ракдионирование. Секция 400 предназначена для переработки жирного газа и неста 5ильной головки АТ жирного газа и нестабильной головки риформинга. Углеводородная смесь разделяется в четырех колоннах с получением сухого газа, пропана, иаобутана, н-бутана и фр. и выше. Благодаря наличию холодильной стадии обеспечивается высокий отбор пропана ог потенциала. Необходимое тепло во все колонны подводится водяным паром через термосифонные кипятильники. [c.33]

    Расход углеводородных газов и кислорода на получение технологического газа, отнесенный к 1 т товарного аммиака, зависит от величины потерь СО -Ь На- Суммарное содержание этих компонентов в технологическом газе до конверсии окиси углерода часто называют потенциальным водородом , учитывая, что при последующей конверсии СО получается эквивалентное количество водорода. Потери потенциального водсрода возможны на всех стадиях переработки конвертированного газа в азото-водородную смесь и получения из нее аммиака. [c.64]

    Общим для всех природных газов Урало-Поволжья является наличие и них сероводорода (за исключением девонских газов) и повышенное содержание влаги. Для химической нереработки газов требуется специальная очистка газов. Очистка газов должна быть включена в общую схему подготовки газов к переработке, включающую компрессию, масляную абсорбцию, стабилизацию газового бензина, фракционировку газов. Такую подготовку должен пройти не только нонутный газ, но и газ, выделяемый при стабилизан ин нефти. Рассмотрение технико-экономических показателей но отдельным стадиям подготовки попутных газов и газов от стабилизации нефти показало, что себестоимость получаемых углеводородных фракций ниже по сравнению с одноименными фракциями газа, получаемыми на иефтеперерабатываюнщх заводах. [c.22]

    Низкая степень вовлечения в химическую переработку ПГ как углеводородного сырья сохраняется с самого зарождения отечественной нефтехимии. Дело в том, что газовая промышленность в течение длительного периода рассматривалась исключительно как поставщик энергетического и бытового голубого топлива, а предложения о создании в ее составе газохимических производств отвергались без обсуждения. С другой стороны, нефтяная и газовая отрасли зарекомендовали себя ненадежными источниками нефтехимического сырья. Напряженность энергетического баланса страны, высокие темпы отбора нефти и газа, длительные сроки строительства продуктопроводов, газоперерабатывающих заводов и нефтехимком-бинатов, а также ведомственная разобщенность на всех стадиях в большинстве случаев приводят к тому, что к моменту ввода в действие нефтехимических производств ресурсы углеводородного сырья в соответствующем районе оказываются уже в значительной степени исчерпанными. Так произошло, например, в Волго-Уральском регионе с Пермским, Отрадненским, Туймазинским, Шкаповским и Миннибаевским газоперерабатывающими заводами, а также с Салаватским, Стерлитамакским, Нижнекамским, Чайковским нефтехимкомбинатами, в самое последнее время — с Казахским ГПЗ и заводом пластмасс в г. Шевченко (Казахстан). [c.557]


Смотреть страницы где упоминается термин Переработка углеводородных газов в две стадии: [c.5]    [c.143]    [c.99]    [c.34]    [c.195]    [c.37]   
Переработка нефти (1947) -- [ c.184 ]




ПОИСК





Смотрите так же термины и статьи:

Углеводородный тип газов



© 2025 chem21.info Реклама на сайте