Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Криптон масс-спектр

    Дальнейшая разработка вопроса стала возможной лишь в результате значительного усовершенствования метода парабол. Соответственно изменив относительное расположение электрического и магнитного полей, удалось добиться того, что все ионы с одним и тем же отношением заряда к массе независимо от их скорости попадали на фотографической пластинке в одно место (Астон, 1919 г.). Благодаря замене ветви параболы одним небольшим пятном получилось резкое увеличение чувствительности метода. Вместе с тем точность определения масс отдельных частиц при помощи нового прибора (масс-спектро-Рис. 218, Спектры масс графа) достигала 0, %-аргона и криптона. Принципиально важным результатом масс- [c.434]


    В качестве примера на рис. XVI-10 показаны масс-спектры аргона и криптона. Как видно из рисунка, обычный аргон оказался смесью двух изотопов с массами 40 и 36. Зная его практический атомный вес (39,95), можно было ориентировочно подсчитать, что он содержит 99,6 7о атомов Аг и 0,4% з Аг. Этому резкому количественному преобладанию первого из изотопов и отвечает гораздо более темное пятно для пего на фотографии. [c.537]

    Калибровка омегатрона по масс-спектрам остаточного газа, метана, бензола и криптона показала, что при напряженности магнитного поля 4000 э в зазоре 38 мм обратная пропорциональность массовых чисел резонансных ионов радиочастоте удовлетворительно выполняется до М/е == 84. До возгонки пленки платины на стенки адсорбционного сосуда было проверено, можно ли вести анализ углеводородов при впуске их паров из адсорбционного сосуда в омегатрон, отключенный от системы откачки. Оказалось, что интенсивности пиков с М/е, равными 16 и 15, линейно возрастают с увеличением количества метана, впущенного в омегатрон, и мало меняются со временем. При впуске паров бензола в омегатрон, отключенный от системы откачки, интенсивность пика с М/е = 78 быстро уменьшалась, а интенсивность пиков с М/е == 1, 2, 14, 15 и 16 увеличивалась, что указывало на расщепление бензола с образованием водорода и метана, по-видимому, вследствие взаимодействия с горячими металлическими деталями омегатрона. [c.106]

    Атомные характеристики. Атомный номер 36, атомная масса 83,80 а. е. м, атомный объем 27,90-10- м /моль, атомный радиус 0,197 нм, потенциалы ионизации / (эВ) 13,996 24,56 36,9. В твердом состоянии имеет г. ц. к. решетку с периодом с = 0,655 им (прн 4,2 К) и 0,571 им (при 89 К). Электронное строение изолированного атома 4x 4 . Атмосферный криптон состоит из смеси шести стабильных изотопов с массовыми числами 78 (содержание 0,35 /о), 80 (2,27 %), 82 (11,56 %), 83 (11,55 %). 84 (56,9%) и 86 (17,37 %). Кроме того получено 15 радиоактивных изотопов криптона, наиболее долгоживущий из которых Кг имеет период полураспада 77 мин. Эффективное поперечное сечение захвата тепловых нейтронов для природного криптона составляет (31 d=2)-10-28 ,2 при экспериментально определенном среднем сечении рассеяния для максвелловского спектра нейтронов (7,2 0,7) Ю м . Сродство атома криптона к протону 3,7 эВ. [c.541]

Рис. 45. Каналовые лучи и схема спектрографа масс, а—разрядная трубка 6—схема спектрографа иасс в — спектр масс криптона. Рис. 45. <a href="/info/4806">Каналовые лучи</a> и схема <a href="/info/16551">спектрографа масс</a>, а—<a href="/info/16917">разрядная трубка</a> 6—схема спектрографа иасс в — <a href="/info/18865">спектр масс</a> криптона.

    Это — вторая фокусировка (выделение частиц с одинаковой массой). Если же ионы газа различны по массе (что наблюдается у смешанного элемента, атомы которого имеют различную массу), то получится ряд линий различной толщины (жирности) и различно удаленных друг от друга (см. рис. 55, в, спектр масс криптона). [c.194]

    Приведем определения некоторых основных единиц СИ. Метр — длина, равная 1650763,73 длин волн в вакууме излучения, соответствующего оранжево-красной линии спектра криптона-86 (переход между уровнями 2рю и 6 5) . Килограмм — масса международного прототипа килограмма первый прототип килограмма хранится в Национальном архиве Франции .  [c.261]

    Ряс. XVI-10. Спектры масс аргона и криптона. [c.537]

    Исследовались ионно-молекулярные реакции в системах метан, метанол, вода, аргон и криптон с иодом [237], галогенными солями щелочных металлов [354], азотом, кислородом, окисью углерода, двуокисью серы, двуокисью углерода, карбонилсульфидом и сероуглеродом [89] натрий, калий, рубидий и цезий с водородом, дейтерием и кислородом [79]. Исследовалось взаимодействие атомов аргона с одно- и двузарядным неоном и аргоном [5] водород, кислород, вода и их бинарные смеси [144] триэтилалюминий и октен-1 [387] атомы азота с озоном, молекулярные ионы водорода с водородом, азотом гелием, аргоном и криптоном [391]. Гиз и Майер [210] исследовали ионно молекулярные реакции в приборе, в котором первичный пучок пересекал продольно ионизационную камеру. Ирза и Фридман [269] изучали диссоциацию НВ", вызванную столкновением. Филд [173] описал ионно-молекулярные реакции высшего порядка и получил масс-спектр этилена при сверхвысоком давлении. Бейнон, Лестер и Сондерс [45] исследовали ионно-молекулярные реакции разнообразных органических кислород- и азотсодержащих соединений они установили, что наиболее значительными пиками в их масс-спектрах являются пики с массой на единицу больше молекулярной. Беккей [34] исследовал ассоциацию воды и ионно-молекулярные реакции, используя ионный источник с ионизацией на острие. Хенглейн и Мучини [238] проанализировали значение ионно-молекулярных реакций в радиационной химии. [c.664]

    Основным физическим методом, использованным при открытии изотопов стабильных элементов, стал метод катодных лучей, впервые применённый для анализа масс элементов Дж.Дж. Томпсоном — метод парабол [5. Исследуя газовую составляющую воздуха, Томпсон в 1913 году впервые наблюдал раздвоение на фотопластинке параболы, описывающей массы атомов инертного газа неона, что было невозможно объяснить присутствием в катодных лучах какой-либо с ним связанной молекулярной составляющей. Война прервала эти работы, но сразу с её окончанием Ф. Астон, работавший до войны с Томпсоном, вернулся к этой тематике и, критически пересмотрев метод парабол, сконструировал первый масс-спектрограф для анализа масс изотопов, имевший разрешение на уровне 1/1000 [6. В 1919 году он использовал новый прибор для исследования проблемы неона и показал, что природный неон является смесью двух изотопов — Ые-20 и Ме-22 [7], так что его химический атомный вес 20,2 (в единицах 1/16 массы кислорода), отличный от целого числа 20, можно объяснить, предполагая, что естественный неон — смесь двух изотопов, массы которых близки к целым числам, смешанных в пропорции 1 10. Тем самым Ф. Астон впервые убедительно экспериментально доказал принципиальное существование изотопов стабильных элементов, которое уже широко дискутировалось в то время в теоретических работах В. Харкинса в связи с проблемой целочисленности атомных весов [8]. Получив прямое подтверждение существования изотопов неона, Астон вскоре на том же приборе, развивая успех, показал сложный изотопный состав хлора, ртути, аргона, криптона, ксенона, ряда галогенов — иода, брома, нескольких элементов, легко образующих летучие соединения — В, 51, Р, 5, Аз, и ряда щелочных металлов — элементов первой группы таблицы Менделеева. Он также зафиксировал шкалу масс ядер, положив в её основу кислород (0-16) и углерод (С-12), в то время считавшихся моноизотопными, и провёл сопоставление их масс. К концу 1922 года им были найдены наиболее распространённые изотопы около трёх десятков элементов (см. табл. 2.1), за что 12 декабря 1922 года он получает Нобелевскую премию. Несколько раньше (1920) он, проанализировав первый экспериментальный материал, формулирует эмпирическое правило целочисленности атомных весов изотопов в шкале 0-16 [9]. В 1922 году в исследовании изотопов к нему присоединился А. Демпстер, предложивший свой вариант магнитного масс-спектро-метра с поворотом исследуемых пучков на 180 градусов [10]. Он открыл основные изотопы магния, кальция, цинка и подтвердил существование двух изотопов лития, найденных перед этим Ф. Астоном и Дж.П. Томпсоном (табл. 2.1). [c.39]


    Измерение абсолютных значений изотопных отношений было осуществлено Ниром 11506] для аргона. Метод Нира применим к любому элементу, изотопы которого могут быть легко отделены один от другого и получены в чистом виде. Для получения отношения истинной распространенности к измеренной в своем масс-спектрометре Нир использовал образец, приготовленный из чистых Аг и Аг. Применяя электростатическую развертку спектра, он нашел, что дискриминации приводят к завышению истинного значения Аг/ Аг на0,63%. Нир использовал этот поправочный коэффициент, вызванный дискриминацией по массам, в своем приборе для получения величин относительной распространенности изотопов углерода, азота, кислорода и калия. Далее измерения были распространены на неон, криптон, рубидий, ксенон и ртуть [1507]. Лишь в случае аргона, когда проводилось прямое сравнение с эталоном, можно было с уверенностью исключить систематическую ошибку. Однако и для других исследуемых образцов принято, что систематические ошибки меньше ошибок, полученных ранее, и что величины распространенностей изотопов, определенные для этих образцов, позволят использовать их как вторичные эталоны. Интересно отметить, что для некоторых элементов, таких, как серебро, хлор и бром, которые состоят из двух изотопов со сравнимой распространенностью, абсолютные значения изотопных отношений точнее вычисляются на основании химических атомных весов и физически определенных масс изотопов, чем прямым измерением на масс-спектрометре. Для таких элементов химический атомный вес и атомный вес изотопа используются для проверки абсолютной точности измерений распространенности. Самый легкий элемент — водород — может быть использован для изучения дискриминации по массам благодаря большой величине отношения масс На и HD. Водород и дейтерий легко доступны задача получения истинных отношений H2/HD решается при анализе искусственных смесей известного состава и сравнением результатов измерения подобных образцов с измерениями смесей неизвестного состава. Это было сделано для образцов, содержащих 0,003—0,830 мол.% дейтерия [808], при использовании ионных источников без вспомогательного магнита. Результаты анализа определенного образца могут колебаться до 3% при изменении условий работы источника при наличии магнита источника изменение изотопных отношений достигало 25%. При использовании магнита источника значение отношения HD/Hg было всегда завышенным наблюдалась тенденция к еще большему увеличению этого отношения с увеличением количества анализируемого образца. Подобные эффекты не отмечались в отсутствие поля магнита источника. В этих условиях для смесей, содержащих около 0,1% дейтерия, была установлена абсолютная точность измерения 3%. [c.78]

    Эффект резонансной ядерной флуоресценции без отдачи, как правило, достаточно ярко проявляется на фоне других нерезонансных процессов взаимодействия гамма-квантов с веществом, когда R % йшср ( ср — средняя частота характеристического спектра кристалла см. ниже) и вдобавок Т < R k. Эти условия налагают определенные ограничения на возможные объекты исследования (ядра и вещества). Даже при наибольших значениях йсоср ( 0,2 эв) величине R 0,5 эв отвечают уже исчезающе малые значения f п f. Между тем при А = 100 величинам R 0,5 эв соответствуют энергии ядерных переходов Ёо > 300 кэв. Так как с уменьшением массы ядра энергия первых уровней возбуждения, как правило, сильно возрастает, то величина R очень сильно растет при переходе от тяжелых ядер к легким. Поэтому вероятность наблюдения эффекта Мессбауэра для легких элементов оказывается чрезвычайно малой. На рис. 1.9 приведена таблица элементов, на которых уже наблюдался эффект Мессбауэра . Наиболее легким из таких элементов является пока калий. Наличие эффекта Мессбауэра для железа, германия, олова, теллура, иода, золота, криптона и ксенона, многих металлов, почти всех лантаноидов, а также ряда актиноидов открывает весьма богатые возможности различных химических исследований, в первую очередь изучения комплексных и элементоорганических соединений. Как будет видно из дальнейшего, в основе таких исследований лежит наблюдение изменений энергии резонансных гамма-квантов под влиянием химических связей атомов излучателей и поглотителей. Для]химиков, конечно, огорчи- [c.23]

    Для анализа на приборе Мурё берут 200 см природного газа. Сушат го, пропуская через трубку с фосфорным ангидридом до достижения постоянного объема. Объем сухого газа замеряют и приводят к нормальным условиям давления и температуры. Далее ведут поглощение всей массы газа в большом поглотительном цикле, заставляя природный газ длительно циркулировать по системе трубок при помощи ртутного капельного насоса Шпренгеля. В большом поглотительном цикле происходит поглощение всех химически деятельных газов. Углекислый газ и сероводород, а также другие возможные кислые газы поглощаются твердым едким калием получающаяся при этой реакции вода задерживается в дальнейшей трубке с фосфорным ангидридом. Далее газ проходит через трубку с металлическим кальцием, нагретым докрасна, где связывается находящийся в газе азот (и кислород). Углеводороды и другие горючие газы сжигаются над окисью меди, помещенной в дальнейшей по пути движения газа трубке, нагреваемой докрасна. Образующиеся при горении углекислота и водяной пар поглощаются следующей парой трубок с едким калием и с фосфорным ангидридом. Чистота благородных газов устанавливается по спектру, наблюдаемому при свечении их в разрядной трубке Плюккера. Сумма благородных газов может быть подвергнута вторичной более тонкой очистке в малом поглотитель- ном цикле, содержащем те же реактивы, что и большой цикл. Сумма благородных газов замеряется в малом измерительном колоколе и приводится к нормальным условиям. Затем благородные газы циркулируют над небольшим количеством активированного кокосового угля, охлаждаемого жидким воздухом при этом происходит адсорбция аргона, криптона и ксенона, а гелий и неон остаются в виде газа и могут быть после качественной проверки на чистоту по спектру переведены в измерительную бюретку для замера их количества. Аргон и другие тяжелые благородные газы десорбируются из угля при его нагревании и переводятся в измерительную часть прибора для их количественного определения. Прибор Мурё дает весьма точные результаты. Анализ на нем, включая сушку газа, продолжается около 6—7 часов. [c.202]


Смотреть страницы где упоминается термин Криптон масс-спектр: [c.133]    [c.437]    [c.77]    [c.188]    [c.77]   
Учебник общей химии (1981) -- [ c.501 ]




ПОИСК





Смотрите так же термины и статьи:

Криптон

Масс-спектр

Спектр масс аргона и криптона



© 2025 chem21.info Реклама на сайте