Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные источники

    Существует много различных типов масс-спектрометров. Детали конструкции и относительные достоинства различных типов приборов описаны в литературе [1—7]. Большинство основных принципов масс-спектрометрии можно продемонстрировать, описав принцип действия простого масс-спектрометра, изображенного на рис. 16.1. Образец, находящийся в емкости, вводится через отверстие, входит в ионный источник а и проходит через электронный пучок в точке в, пучок обозначен штриховой линией. При взаимодействии образца с электронами, имеющими достаточную энергию, образуются положительные ионы, движущиеся по направлению к ускоряющим пластинам гид, поскольку между задней стенкой (напускной щелью) и передней стенкой этого устройства существует небольшая разность потенциалов. Отрицательные ионы притягиваются задней стенкой, которая заряжена положительно относительно передней стенки, и разряжаются на ней. Положительные ионы проходят через пластины гид, ускоряются под действием большой разности потенциалов (несколько тысяч вольт) между этими пластинами и покидают ионный источник через отверстие б. Заряженные ионы движутся по круговой орбите под влиянием магнитного поля. Полуокружность, помеченная е, есть траектория движения ускоренного иона в магнитном поле напряженности Н. Радиус полуокружности г зависит от следующих параметров 1) ускоряющего потенциала V(т. е. от разности потенциалов между ускоряющими пластинами г и (3), 2) массы иона т, 3) заряда иона е и 4) напряженности магнитного поля Н. Связь между этими параметрами выражается уравнением  [c.313]


    Даже если аналитический прибор присоединен к струевой системе и используется для анализа частиц, присутствующих в большом количестве, масс-спектрограф может приводить к ошибкам, возникающим вследствие диффузионного отделения более легких молекул и неодинаковой степени легкости образования различных ионов в ионном источнике [26]. [c.97]

    Операция 1 осуществляется в напускной системе 1, 2 масс-спектрометра (см. рис. 178), а операции 2 и 3 — в ионном источнике 3. [c.261]

    Молекулярные и осколочные положительно заряженные ионы под действием электрического поля фокусирующих и вытягивающих пластин вытягиваются из ионного источника через щель, ускоряются электрическим полем до 3000 в и затем поступают в однородное магнитное поле 4, силовые линии которого перпендикулярны направлению скорости движения ионов. [c.261]

    В магнитном время-пролетном масс-спектрометре ионы движутся в постоянном магнитном поле по круговой траектории. В этом спектрометре ионный пучок проходит импульсами с частотой 300 кгц [10]. Ускоряющее электрическое поле падает до нуля раньше, чем ионы (кроме самых легких) выйдут из источника, так что все тяжелые ионы получают равные импульсы, и поэтому в магнитном поле движутся по одной и той же траектории. Так как ионы описывают полную окружность, они фокусируются, давая ионно-оптическое изображение своего пространственного распределения в ионном источнике. Другой тип масс-спектрометра по времени пролета представляет собой прибор, в котором ионы двигаются от источника к коллектору по линейной траектории при отсутствии магнитного поля. В приборе измеряется время дрейфа ионов с известной энергией по длинной ограниченной трубке. Интервал времени между поступлением масс на коллектор [c.7]

    Если ионы проходят через щель ж в детектор, то появляется сигнал. Для того чтобы обеспечить свободное движение ионам, источник [c.314]

    Положительно заряженные ионы образуют луч, который при номощи специальных устройств фокусируется и вытягивается из ионного источника через щель. Затем ионы, составляющие лучи, ускоряются сильным электрическим полем и поступают в изогнутый анализатор, который находится в магнитном поле и силовые линии которого перпендикулярны направлению движения ионов. В анализаторе луч разлагается на отдельные лучи, имеющие одинаковое отношение mie (массы к заряду). [c.856]


    Метод пиролиза был использован при исследовании смолистых отложений на алюмо-кобальто-молибденовом катализаторе [21]. Пиролиз проводился в специальной пиролитической ячейке, присоединенной к ионному источнику масс-спектрометра МХ-1303. Температура пиролиза повышалась с постоянной скоростью 10° С в 1 мин. от 20 до 500° С масс-спектры снимались через каждые 2—3 мин. По полученным масс-спектрам определяли состав продуктов пиролиза в каждый момент времени, а интегрированием интенсивностей пиков во времени — суммарный состав продуктов пиролиза и интегральную кривую газовыделения. Эти дв аппара-турно-методических варианта анализа смолисто-асфальтеновых веществ представляются перспективными [21, 22]. [c.170]

    Масс-спектры снимали на спектрометре МХ-1303 с модифицированными системами напуска образца и регистрации масс-спектра при следующих условиях ускоряющее напряжение 2 ке, энергия ионизирующих электронов 50 Эй, температура ионного источника, анализатора и системы выпуска 250 °С [30]. [c.171]

    До 1950 г. основное внимание в работах по масс-спектро-метрии уделялось конструированию приборов, особенно ионных источников [4]. Для регистрации малых ионных токов были созданы соответствующие электронные лампы и усилители постоянного тока [5]. Применение электронных схем питания электромагнита и ускоряющего напряжения и конструирование удобных регистрирующих приборов привели к созданию масс-спектрометра с автоматизацией всех основных узлов [6]. Были также решены проблемы напуска газов и летучих соединений. К 1950 г. была в основном решена проблема создания хорошего и быстрого метода расчета результатом. [c.7]

    На рис. 8 приведена принципиальная схема радикального масс-спектрометра. Небольшая порция анализируемого газа, содержащего радикалы К и молекулы КХ, вытягивается из реактора / в ионный источник 2 в виде молекулярного пучка, в котором не про- [c.25]

    Из ионного источника пучок, содержащий ионы попадает в поле магнитного анализатора 4. Ионы отклоняются в магнитном поле на определенный угол в соответствии с отношением заряда к массе, и число их регистрируется при помощи вторичного электронного умножителя 5. Малый магнитный анализатор 6 служит для выделения пучка ионов А . [c.26]

    Исследуемое жидкое вещество прямым вводом помещалось рядом с ионизационной камерой. Проба, проникнув в нагретую область (400-420 °С) с низким давлением (10- мм рт.ст.), испарялась и в газообразном состоянии через диафрагму попадала в ионный источник, где под действием электронного удара ионизировалась. [c.29]

    Масс-спектры дают возможность исследовать устойчивость и энергетику многозарядных ионов фуллеренов. С этой целью в [16] использовался масс-спектрометр с двойной фокусировкой и энергией электронов в ионном источнике 200 эВ. В [17] методом высокотемпературной масс-спектрометрии определены давления насыщенного пара фуллерена С60 в интервале 637-846 К и рассмотрено влияние нескольких побочных факторов на измеряемое давление. [c.10]

    Масс-спектрометрическое изучение летучих продуктов, полученных механическим дроблением полиметилметакрилата и полистирола в специальной приставке вблизи ионного источника, показало, что их состав аналогичен составу продуктов термической деструкции [20]. На основании этого была подтверждена гипотеза о том, что механическое разрущение полимеров можно рассматривать как термическую деструкцию, активированную напряжением. [c.11]

    Процессы образования молекулярных и осколочных ионов могут быть названы первичными процессами протекающими в ионном источнике масс-спектрометра. К их числу следует отнести также образование метастабильных ионов (39, 40], возникающих в том случае, когда процесс диссоциации протекает за время, несколько большее, чем время одного колебания атома в молекуле, равное 10 —Ю " сек. Так, если продолжительность существования образовавшихся ионов составляет 1 мксек, то этого достаточно для вытягивания их из ионного источника и приобретения ими ускорения. Однако такие ионы не успевают пройти магнитный анализатор без разложения и распадаются с отщеплением нейтральных частиц, а в масс-спектре появляются ложные пики. Условием для их обнаружения является повышенная концентрация ионов в какой-либо точке ионного потока. [c.23]

Рис. 8. Схема ионного источника масс-спектрометра МХ-1303 Рис. 8. Схема <a href="/info/141306">ионного источника масс</a>-спектрометра МХ-1303

    Расчет теплоты сублимации основан на том факте, что интенсивность пиков в спектре прямо пропорциональна давлению пара образца в ионном источнике. Образец помещают в емкость с отверстием очень небольшого диаметра (ячейка Кнудсена), соединяющим ее с ионным источником, поэтому вещество может попасть в источник только за счет диффузии чфез это отверстие. Если ячейка термостатирована и в ней имеется достаточное количество образца, так что часть его всегда находится в твердом виде, то теплоту сублимации образца можно определить, исследуя изменения интенсивности пика (которая связана с давлением пара) в зависимости от температуры образца. Небольшое количество образца, диффундирующее в ионный источник, не оказывает заметного влияния на равновесие. При таких исследованиях были получены интересные результаты относительно природы частиц, присутствующих в паре над некоторыми твердыми веществами, имеющими высокие температуры плавления. В паре над хлоридом лития были обнаружены мономеры, димеры и тримеры, а в паре над хлоридами натрия, калия и цезия — мономеры и димеры [20]. [c.327]

    СИСТЕМА ВВЕДЕНИЯ АНАЛИЗИРУЕМОГО ВЕЩЕСТВА В ИОННЫЙ ИСТОЧНИК [c.37]

    Необходимое условие для получения ионных токов при взаимодействии электронов с молекулами органических веществ — наличие газовой фазы с достаточно высокой упругостью. В большинстве случаев это осуществляется в системе напуска масс-спектрометра, соединяющейся при помощи какого-либо натекателя с ионным источником. Созданию различных типов натекателей и собственно систем напуска посвящено большое число работ [39]. Мы остановимся лишь на основных требованиях к таким системам, которые должны обеспечить  [c.37]

    Система обеспечивает введение в источник газообразных, жидких и твердых продуктов, с упругостью пара не менее 0,5 мм при 300° С. Баллон и трубка напуска снабжены регулируемыми обогревателями, температура которых стабилизируется с точностью 5 град. Температура камеры ионного источника и коммуникации, ведущей к ней, поддерживается с точностью 3 град. [c.41]

    Непосредственно с вопросом введения в ионный источник образцов, обладающих различной летучестью, адсорбционной способностью и термической стабильностью, связана проблема, ец(е не нашедшая своего окончательного решения, проблема так называемой памяти масс-спектрометра. [c.43]

    Вместе с тем к использованию обогреваемой вакуумной системы следует относиться с осторожностью повышение температуры баллона напуска и металлической трубки между натекателем и ионным источником при исследовании высокомолекулярных спиртов С)о—Сз4 [73] привело к термокаталитическому распаду. Продукты распада были обнаружены по наличию в спектрах указанных спиртов пиков ионов с массовыми числами [М—(20- -/г28)], интенсивность которых резко упала после замены металлической трубки стеклянной. [c.45]

    На приборе МХ-1303 снижение уровня фона до такой же величины достигалось за более короткий промежуток времени, благодаря следующим факторам отсутствие в системе смазки, малое расстояние мел<ду диафрагмой и ионизационной камерой, возможность прогрева всей системы напуска и ионного источника до 350° С. Борьба с адсорбционной памятью облегчалась также более совершенной конструкцией высоковакуумных ловушек и наличием высоковакуумных вентилей. [c.49]

    Простейший способ комплексного применения хроматографа и масс-спектрометра [227] заключается в последовательном собирании выходящих из хроматографа индивидуальных фракций, которые конденсируются в ловушке, охлаждаемой жидким азотом газ-носитель откачивается, и фракции после размораживания поступают в ионный источник масс-спек-трометра. При анализе смесей удавалось проводить идентификацию и при неполном разделении смеси в хроматографе. [c.127]

    Усовершенствование системы введения образца в ионный источник масс-спектрометра, обеспечившее возможность работы при высоких температурах, повышение разрешающей способности и чувствительности прибора, позволили подойти к анализу сложных смесей органических соединений, в частности высокомолекулярных углеводородов нефтяных фракций. Масс-спектрометрическому анализу принципиально могут подвергаться любые продукты, содержащие различные типы углеводородов в широком диапазоне молекулярных весов. Однако целесообразно проводить исследование продуктов, разделенных на фракции, возможно более узкие в отношении распределения молекулярных весов и содержания различных типов углеводородов. [c.155]

    Регистрация масс-спектра заключается в определении отношения т/е для всех фрагментов, образующихся в процессе бомбардировки молекулы пучком высокоэнергетических электронов. Для того чтобы осуществить это, можно двигать щель детектора и измерять величину г для всех частиц, непрерывно генерируемых при электронной бомбарбировке в ионном источнике. Экспериментально такой вариант неосуществим. Значительно проще непрерывно варьировать Н или V [см. уравнение [c.314]

    Термолитический подход к деструкции молекул нефтяных асфальтенов использовали авторы работ [377—381], изучавшие ме тодом ГЖХ состав углеводородов, образующихся при кратковременном воздействии на ВМС нефтей температур порядка 300— 400°С. Дж. Кнотнерус [382] провел обширное исследование превращений модельных углеводородов, а также смол и асфальтенов различного происхождения при температуре около 600°С, применив сочетание последовательно соединенных пиролизера, реактора гидрирования пиролизата и газового хроматографа. Он нашел, что при столь высоких температурах происходит глубокий распад насыщенных структур и новообразование колец за счет циклизации алифатических цепей. По его мнению, метод пиролиза пригоден для качественного сопоставления различных битумов, но не для углубленного изучения их состава и строения. Для сохранения нативной природы фрагментов рекомендовано проводить термическую деструкцию в высоковакуумном пироли-зере, непосредственно связанном с ионным источником масс-спектрометра т. е. в условиях крайне слабого развития радикально-цепных реакций [379, 383, 384]. [c.44]

    PIOHHO-молекуляркые реакции в неорганических газах известны сравнительно давно. Так, в ионном источнике масс-спектрометра была обнаружена ионно-молекулярная реакция [c.190]

    Для решения некоторых частных структурных задач могут быть использованы разные методы фиксирования метастабильных ионов, т. е. ионов, образующихся не в ионном источнике, а в беспо-левом пространстве (первом или втором) масс-спектрометра с двойной фокусировкой. Так, были применены спектры метастабильных переходов для определения терпанов и стеранов во фракциях нефти [189]. Вариант техники прямого анализа дочерних ионов был использован для различения изомерных полициклических аренов [190j, дающих практически не различающиеся обычные масс-спектры. Этим же методом определяли элементы структуры ванадилпорфиринов [190]. Для анализа последних использовался и метод дефокусировки [191]. [c.134]

    После хроматофафического разделения молекулы образца ионизируются в вакууме или в атмосфере инертного газа. В настоящее время чаще всего используют ионные источники, в которых определяемое вещество ионизируется под действием пучка электронов, испускаемых раскаленным рениевым или вольфрамовым нитевидным катодом и ускоряющихся в электрическом поле (электронный удар) Для предотвращения конденсации вещества на стенках ионизационной камеры ее обычно нафевают до 200-250 "С. При соударении электронов с молекулами образца последние ионизируются  [c.263]

    Источник ионоп служит для образования ионов из молекул анализируемого вещества и создания направленного пучка ионов. Ионы могут быть получены различными путями [39], однако чаще всего для исследования органических соединений используются ионные источники с электронной бомбардировкой. При этом предполагается, что объект исследования находится в газовой фазе при давлении около 10 Jчм рт. ст. Для большинства органических веществ это требование вполне выполнимо. Для изучения соединений с более низкой летучестью источник с электронной бомбардировкой используется в сочетании с вакуумной печью. [c.28]

    При масс-спектрометрическом анализе органических соединений и их смесей поступление исследуемого образца в ионный источник, как правило, осуществляется в режиме молекулярного потока. Емкость, в которой находится образец, отделена от источника диафрагмой и натекание происходит за счет перепада давлений с одной стороны диафрагмы (в напускном объеме) устанавливается сравнительно высокое давление до 1 мм рт. ст., с другой (в ионном источнике) — давление не превышает 10" мм рт. ст. Если диаметр отверстия меньше длины свободного пробега молекул в области высокого давления, то газ течет через диафрагму в молекулярном режиме и скорость течмия газа с молекулярным весом М пропорциональна 1/УМ и парциальному давлению газа в системе напуска. Смесь газа откачивается из ионного источника со скоростью, пропорциональной поэтому [c.37]

    Метод, с помощью которого твердые либо жидкие образцы могут быть введены в систему напуска, нагретую приблизительно до 200° С, был описан Кольдекортом [60]. Менее летучие материалы могут быть введены в масс-спектрометры после нагревания в маленькой печи и испарения непосредственно в электронный пучок такая система применялась ири изучении качественного состава асфальтов [61]. Печка может находиться также и вне ионизационной камеры в этом случае работают с молекулярным пучком образца. Последняя система широко применялась для исследования металлов и других неорганических соединений и продуктов термического распада полимеров [62]. В работе [63] описана конструкция, обеспечиваюи ая непосредственный ввод анализируемого вещества в ионный источник. [c.39]

    В масс-спектрометре МХ-1303 ввод образца в ионный источник обеспечивается системой, схема которой вместе с усовершенствованиями, внесенными в систему авторами, изображена на рис. 12. Эти изменения позволили вводить в баллон напуска вещества, выкипающие до 200° С, минуя шлюз. Система напуска, выполненная в виде отдельной стойки, имеет самостоятельную вакуумную систему, предназначенную для откачки баллона напуска и вакуумных коммуникаций перед анализом и для ввода анализируемой пробы в баллон напуска. Предварительное разрежение создается форвакуум-ным насосом типа ВН-461 производительностью 50 л1мин. Для создания высокого вакуума служит ртутный диффузионный насос типа ДРН-10. Давление в системе измеряется при помощи блока, датчики которого — термопарные манометрические лампы типа ЛТ-4М — установлены на форвакуумном насосе и баллоне. На высоковакуумной ловушке установлены датчики ионизационного манометра (лампы ЛМ-2), [c.40]

    Из данных, полученных при анализе смесей воды и спиртов [66, 70], следовало, что на ослабление памяти в наибольшей степени влияло уменьшение участка, расположенного между натекателем и ионным источником. Благоприятной для снижения эффектов сорбции оказалась промывка системы напуска исследуемым веществом в течение 2 лшн с последующей откачкой системы в течение I мин. Применение обогреваемой системы иапуска значительно расширило возможности масс-спектрометрического метода и в отношении диапазона молекулярных весов исследуемых соединений. Были исследованы [71] масс-спектры спиртов с 9 атомами углерода в молекуле при температуре системы напуска и камеры ионизации, равной 240° С, и проведен количественный анализ смесей спиртов с 6 и 7 атомами углерода в молекуле [72]. Относительная погрешность метода при температуре источника 250° С, проверенная на искусственных смесях, которые составлены из геп-танолов-2, -3 и -4, а также гексанола-1 и 2-этилбутанола-1, составляла около 5%, Максимальное отклонение от заданного значения составляло 19,3% а среднее — 8,27о- [c.45]

    При промывке прибора аргоном интенсивность пика, отвечающего ионам с массой 71 в спектре изопонанола уменьшалась в 1,5—2 раза, а при откачке аргона опять возрастала (рнс. 15). Иная картина наблюдалась при промывке вакуумной системы масс-спектрометра водородом (рис. 16). При натекании последнего в ионный источник возрастал пик, на [c.46]

    Наряду с развитием аналитических методов, учитывающих влияние различных факторов на точность определения потенциала ионизации и потенциала появления, проводились различные усовершенствования аппаратуры для устранения или сведения до минимума эффектов объемного заряда электронного пучка, разброса электронов по энергиям, провисания электростатических полей в ионный источник. Один из наиболее простых методов, с помощью которых может быть уменьшен разброс электронов по энергиям 295], состоит в следующем (рис. 43). Электроны, эмитируемые катодом, ускоряются и направляются в ионизационную камеру под действием потенциала 1/ь Промежуточный электрод / находится под отрицательным потенциалом Уя но отношению к катоду благодаря этому предотвращается попадание в ионизационную камеру электронов с малой энергией. Возрастание ионного тока, наблюдаемого при снижении абсолютного значения Уп на А д (1 1 остается постоянным), представляет собой ионный ток, образуемый моноэнергетичными электронами в диапазоне Лйя- Если абсолютное значение больше, а меньше, то обе эти величины однозначно определяют энергию электронов, образующих наблюдаемую разность в ионном токе. Если разность ионного тока выразить как функцию Ум, сохраняя Ук постоянным, то вблизи потенциала ионизации она становится равной нулю. Подобную схему без особого труда можно осуществить на обычном источнике типа Нира. [c.177]


Смотреть страницы где упоминается термин Ионные источники: [c.105]    [c.46]    [c.230]    [c.26]    [c.26]    [c.30]    [c.30]    [c.37]    [c.37]    [c.132]    [c.133]    [c.161]    [c.186]   
Смотреть главы в:

Руководство по масс-спектрометрии для химиков-органиков -> Ионные источники

Аналитические возможности искровой масс-спектрометрии -> Ионные источники

Физические методы органической химии Том 3 -> Ионные источники


Масс-спектромерия и её применение в органической химии (1964) -- [ c.115 ]

Масс-спектрометрия и её применение в органической химии (1964) -- [ c.115 ]




ПОИСК







© 2025 chem21.info Реклама на сайте