Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий с кремнием

    Напишите эмпирические формулы оксидов следующих элементов а) лития б) бериллия в) бора г) кремния д) азота е) мышьяка ж) селена з) рубидия и) стронция к) серебра л) кадмия м) индия н) олова о) сурьмы п) теллура р) цезия с) бария т) золота у) ртути ф) таллия х) свинца. [c.8]

    Пользуясь таблицей значений относительных электроотрицательностей элементов, расположите химические символы перечисленных ниже элементов в порядке последовательного возрастания электроотрицательностей фосфор, бор, магний, кислород, цезий, кремний, углерод, калий, литий, водород, сера, фосфор, кальций, алюминий. [c.35]


    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]

    Большой интерес для металлургии цезия представляют разрабатываемые методы прямого его получения из поллуцита. По одному из методов, предложенному Р. Штауффером [ 1911, цезий можно извлекать прямой возгонкой из поллуцита в процессе нагревания гранулированной смеси его с избытком извести и восстановителя (алюминия, кремния, их сплава и др.) при 1050—1150° и 0,001—0,1 мм рт. ст. По другому [c.155]

    К этой группе веществ можно отнести фосфор белый (желтый), фосфористый водород, водородистый кремний, цинковую пыль, алюминиевую пудру, карбиды щелочных металлов, сернистые металлы, металлы — рубидий и цезий, арсины, стибины, фосфи-ны и др. [c.118]

    В составленной Д. И. Менделеевым периодической системе обнаружились незаполненные места (табл. 2), что позволило ему предсказать существование новых химических элементов, например аналогов бора, алюминия, кремния, циркония, марганца, теллура, цезия, бария, тантала и других. Эти предсказания вскоре подтвердились в 1875 г. французский химик Лекок де [c.9]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Основная область применения окисей — электротехника [68]. Окисн цезия и рубидия, используемые в сложных фотокатодах в виде тонких пленок, образуются непосредственно в вакуумном приемнике излучения путем восстановления особо чистых хрома-тов рубидия и цезия при 700—800° С алюминием, кремнием или цирконием [34]. [c.84]

    Для разложения поллуцита бромистоводородной кислотой минерал подвергается сначала дроблению до 200—300 меш, а затем нагреванию до кипения с 40—48%-ной технической кислотой в течение нескольких часов. На 1 кг поллуцита, содержащего около 30% СзгО, требуется 3 л 40%-ной бромистоводородной кислоты (плотность 1,38 г см ). После окончания реакции раствор отфильтровывают от осадка двуокиси кремния и нерастворимых силикатов и упаривают до тех пор, пока температура кипения не достигнет 130—140° С, затем реакционную смесь охлаждают до 20—60° С и обрабатывают двукратным по отношению к рабочему раствору объемом изопропанола для извлечения бромидов алюминия и железа. Водную фазу упаривают досуха и смесь бромидов щелочных металлов обрабатывают жидким бромом в различного типа перко-ляторах . Жидкий бром, протекая через слой бромидов щелочных металлов, взаимодействует с бромидом цезия, образуя Сз[Вг(Вг)г], который и переходит в жидкую фазу . На каждый 1 кг поллуцита расходуется для этой цели в среднем 0,93 л брома. [c.285]


    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Реакция с галогенами сопровождается взрывом. Со взрывом идет зеакция с серой, двуокисью углерода и четыреххлористым углеродом 10]. При нагревании взаимодействуют с углеродом (графитом), красным фосфором и кремнием [10]. Выше 300° разрушают стекло, восстанавливая кремний из SIO2 и силикатов [6]. Оказывают сильное корродирующее действие на многие металлы и материалы. Гидриды их МеН образуются при нагревании расплавов в атмосфере водорода. RbH и sH менее устойчивы, чем LiH, и во влажном воздухе окисляются, воспламеняясь [10]. С азотом рубидий и цезий непосредственно не реагируют их нитриды МезЫ, получаемые взаимодействием паров металлов с азотом в поле тихого электрического разряда [6], менее устойчивы, чем LI3N. [c.84]

    В этот же период зародилось учение о валентности (Ф. Кекуле, Ш. Вюрц и др.), стали известными иовые хим. элементы (бор, литий, кадмий, селен, кремний, бром, алюминий, иод, торий, ванадий, лантан, эрбий, тербий, диспрозий, рутеш й, ниобий), с помощью введенного в практику спектр, анализа было доказано существование цезия, рубидия, таллия и индия. Было проведено определение и уточнение атомных масс мн. хим. элементов. [c.211]

    Первые систематические исследования процессов металлотермического восстановления редких щелочных металлов были проведены русским химиком И. Н. Бекетовым [18, 19], получившим металлические рубидий и цезий действием алюминия на RbOH и tsOH. В дальнейшем в качестве исходных веществ для получения лития, рубидия и цезия была опробована большая группа соединений (галогениды, гидроокиси, карбонаты, сульфаты, хроматы, цианиды, алюминаты, силикаты и бихроматы) и значительное количество восстановителей (магний, кальций, барий, натрий, алюминий, железо, цирконий, кремний, углерод, титан). [c.385]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Для получения моносилицидов рубидия и цезия порошкообразный кремний нагревают с трех- четырехкратным избытком щелочного металла в корундовом тигле, помещенном в герметично закрытую стальную бомбу, в атмосфере аргона при 600° С в течение трех-четырех суток. По окончании реакции бомбу медленно охлаждают, избыточный металл отгоняют в глубоком вакууме при 150— 180° С [223—22Гэ]. [c.113]

    В результате переработки поллуцита, литиевых и калиевых мийералов, радиоактивных отходов, рапы соляных озер и рассо- лов морского типа получаются рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов, нитратов и других солей рубидия и цезия. Такие концентраты содержат примеси калия, натрия, магния, кальция, кремния, алюминия, железа, хрома, титана и др. [c.334]

    Если исходный нитрат рубидия содержит примесь цезия, то перед получением перхлората рубидия [380] водный раствор нитрата обрабатывают кремневольфрамовой кислотой. Осадок крем-невольфрамата цезия, содержащий некоторое количество кремне-вольфрамата рубидия, отфильтровывают. Затем к фильтрату добавляют карбонат аммония и раствор нагревают до кипения для разрушения избытка кремневольфрамовой кислоты и осаждения 5102 пНаО. Второй фильтрат подкисляют соляной кислотой, упаривают досуха и обрабатывают водой для извлечения хлорида рубидия, который переводят в перхлорат нагреванием с избытком хлорной кислоты. [c.140]

    При кратком ознакомлении с ранними методами следует иметь в виду, что в то время сложность переработки и экономические соображения не имели особого значения, так как масштабы производства соединений лития, в силу ограниченного их применения, были незначительны. Поэтому многие методы из тех, которые ниже кратко описаны или упомянуты, представляют теперь только познава-. тельный интерес. Однако следует помнить, что подобные методы явились предшественниками современных, и на сопоставлении тех и других легко проследить, как развивалась научная технологическая мысль. К тому же некоторые из старых методов не утратили своего значения и сегодня, а иные переживают период переоценки, и вовсе не исключено, что на фоне общего технического прогресса (и благодаря ему) они окажутся весьма перспективными в недалеком будущем. Что же касается современных методов, особенно промышленных, то они немногочисленны и основаны на способах разложения, в результате которых после водной обработки материала удается получать технические растворы LiOH или (значительно чаще) LI2SO4, практически свободные от главных компонентов силикатного сырья — кремния и алюминия. Другим общим достоинством этих методов является их универсальность (как правило) — применимость к переработке различных видов сырья и пригодность их для попутного извлечения или концентрирования других ценных элементов, прежде всего частых спутников лития в минеральном сырье — рубидия и цезия. Небезынтересно отметить, что отходы современных производств соединений лития очень часто являются ценными продуктами, находящими применение в качестве вяжущих строительных материалов, заменителей дефицитных химикалий, удобрений. [c.227]


    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Остаток от разложения кремнемолибдатов рубидия и цезия, представляющий собой белый и рыхлый порошок, состоящий из хлоридов калия, рубидия и цезия и двуокиси кремния, подвергают двукратному выщелачиванию горячей водой кремневую кислоту отфильтровывают, а фильтрат упаривают досуха. Конечный продукт содержит 82 7о хлорида рубидия [252, 253]. [c.299]

    Плотность— 1,854 при 0° и 1,811 при 32°. При обычных температурах она не растворяет в себе углерод, водород, азот, кислород, кремний, теллур, металлы и не реагирует с ними. Исклю чение составляют щелочные металлы и сурьм а. Реакции со щелочными металлами сопровождаются взрывом при определенных температурах, изменяющихся от 30 (для цезия) до 180° (для натрия). Для лития такая температура не определена. [c.106]

    Значения отношения радиусов для 0 даны в таР -таблицы видно, что кремний (81) существует в четыр Р тной (тетраэдрической) координации с кислородом (О), т- он соответствует тетраэдрическим позициям. Этим об ьясняется существование тетраэдров 8104. В октаэдрических позициях, больших по размерам, чем тетраэдрические, размещается катионы большего радиуса. Однако некоторые катионы, например стронций (8г " ) и цезий (Сз+) (отношение радиусо >0,732), слишком велики, чтобы соответствовать октаэдричес- пози- [c.75]


Смотреть страницы где упоминается термин Цезий с кремнием: [c.125]    [c.112]    [c.590]    [c.153]    [c.120]    [c.134]    [c.166]    [c.17]    [c.392]    [c.38]    [c.98]    [c.73]    [c.90]    [c.116]    [c.146]    [c.230]    [c.387]    [c.189]    [c.70]    [c.318]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.112 , c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте