Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия и седиментация коллоидных систем

    В высокодисперсной коллоидной системе вследствие конкуренции процессов седиментации и диффузии устанавливается [c.103]

    Итак, исследование молекулярно-кинетических и оптических свойств позволяет определять одну из важнейших характеристик дисперсных систем — размеры частиц дисперсной фазы, или степень дисперсности системы. Размеры коллоидных частиц можно найти, определив коэффициент диффузии для данной коллоидной системы. Размеры их можно установить также ультрамикроскопическими и нефелометрическими наблюдениями или с помощью электронного микроскопа. Измеряя скорость седиментации частиц в грубодисперсных системах, также можно определить и степень их дисперсности. [c.47]


    Коллоидные системы по своим молекулярно-кинетическим свойствам (броуновскому движению, диффузии, осмотическому давлению, седиментации) отличаются от растворов низкомолекулярных веществ, главным образом, лишь благодаря более значительным размерам своих час- [c.50]

    При концентрации капель выше 75% эмульсии являются высококонцентрированными (кремы). В таких системах вопросы о движении частиц (седиментация, диффузия) отпадают и эмульсии по своим свойствам сходны со структурированными коллоидными системами — гелями. Когда концентрация капель приближается к 100%, дисперсионная среда [c.131]

    Коллоидные частицы имеют весьма малые размеры и поэтому участвуют в броуновском движении, в то же время они обладают заметной скоростью диффузии (10 —10 см /с), что способствует выравниванию концентрации частиц по объему. Коллоидные системы обладают избытком свободной энергии за счет чрезвычайно развитой удельной поверхности частиц. Термодинамически такая система должна самопроизвольно стремиться к состоянию, в котором ее свободная энергия была бы минимальна, т. е. к самопроизвольному умень-. шению поверхности, а следовательно, и к укрупнению частиц. Однако на практике коллоидные системы обладают весьма высокой агрегативной устойчивостью. Такая устойчивость при малых размерах частиц способствует седиментационной устойчивости (постоянству концентрации примесей по всему объему воды), так как гравитационная сила, вызывающая седиментацию, нивелируется силами диффузии. Агрегативная устойчивость коллоидной системы объясняется существованием двойного электрического слоя ионов и скачка потенциала на границе раздела фаз. [c.30]

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным уменьшением концентрации частиц в направлении от нижних слоев к верхним. Распределение частиц в зависимости от высоты столба жидкости подчиняется гипсометрическому (или барометрическому) закону Лапласа в применении к золям при [c.307]


    Однако надо иметь в виду, что, как уже указывалось, такое равновесие частиц в поле земного тяготения можно наблюдать лишь для коллоидных и весьма малых дисперсных частиц, размеры которых не превышают десятых долей микрона. Для них сила тяжести уравновешивается диффузией, стремящейся выровнять концентрации частиц, и наступает так называемое седиментационное равновесие. Для систем с более крупными частицами (начиная с 1 мк) уже наблюдается седиментация, т. е, свободное их оседание под действием силы тяжести. Седиментация, следовательно, происходит в грубодисперсных системах, размер частиц в которых превышает 1 мк.  [c.29]

    Учение об оптических свойствах коллоидных и микрогетерогенных систем является одним из основных разделов коллоидной химии. Оптические свойства золя определяются свойствами коллоидных частиц, поэтому, изучая оптические свойства системы, можно установить размер, форму и строение частиц,, не видимых в обычный микроскоп. С помощью ультрамикроскопических наблюдений коллоидных систем удалось проверить основные молекулярно-кинетические представления, долгое время носившие гипотетический характер изучение оптических свойств способствовало количественному толкованию таких процессов, как диффузия, броуновское движение, седиментация, коагуляция. Наконец, ввиду того,, что космическая пыль, туманы, облака и тончайшие взвеси твердых частиц в морской и речной водах являются коллоидными и микрогетерогенными системами, сведения об оптических свойствах этих систем имеют и весьма важное практическое приложение в астрофизике, метеорологии, оптике моря. Вождение самолетов и кораблей в тумане, фотографирование с помощью инфракрасных лучей также имеют непосредственное отношение к оптике коллоидных систем. Эта область науки сделала значительные успехи в последние годы в связи с развитием авиации, астронавтики и т. д. [c.33]

    Исследование оптических свойств высокодисперсных систем имело исключительно большое значение не только для установления новых взглядов на природу коллоидных растворов, но и дало экспериментаторам методы для наблюдения за поведением коллоидов, определения их концентрации, размеров и форм частиц. Значение оптических методов также состоит в том, что они дали возможность проверить ранее имевшие гипотетический характер молекулярно-кинетические представления о строении веществ, распространить их на высокодисперсные системы,и подвести строго теоретическую базу под такие явления, как диффузия, броуновское движение, седиментация, коагуляция. Непосредственным результатом было неопровержимое доказательство реальности существования молекул. Наконец, оптические методы дали возможность экспериментально демонстрировать статистическую природу второго закона термодинамики, в частности в связи с броуновским движением. [c.314]

    При работе над вторым изданием данного учебника авторы считали своей основной задачей дополнить его теми разделами, которые особенно остро необходимы для создания у будущих спе-циалистов-биологов полного фундамента физико-химических знаний. С этой целью написаны две новые главы — о процессах переноса (с главным акцентом на процессы диффузии, седиментации и электрической проводимости, гл. XVIII) и о поверхностных явлениях и дисперсных системах (составляющих предмет специального раздела физической химии, часто называемого коллоидной химией, гл. XVII). Кроме того, в гл. VIII (строение макроскопических систем) введен параграф ( 8.5) о высокомолекулярных соединениях. Остальные изменения представляют собой небольшие дополнения, уточнения в формулировках и некоторые перестановки, неизбежные при введении нового материала. При этом был учтен опыт работы с первым изданием и пожелания коллег. [c.4]

    Свойства высококонцентрированных эмульсий. Для таких систем вопросы, связанные с движением частиц (диффузия, седиментация), отпадают, и эмульсии по своим свойствам сходны со структурированными коллоидными системами — гелями. Когда концентрация капель приближается к 100%, дисперсионная среда принимает вид очень тонких прослоек жидкости — эмульсионных пленок. Такие эмульсии по своей структуре аналогичны пенам (см. главу 17), их свойства определяются, в первую очередь, свойствами эмульсионных пленок, стабилизированных экгульгаторами. [c.248]

    Молекулярно-кинетическая теория рассматривает коллоидные системы как частный случай истинных растворов дисперсную фазу — как растворенное вещество, дисперсионную среду — как растворитель. Это позволяет вполне удовлетворительно объяснить явления осмоса, диффузии,седиментаци-онного равновесия и другие неспецифические свойства коллоидов (т. е. свойства, не связанные с проявлением молекулярных взаимодействий на поверхности коллоидных частиц). [c.19]


    Коллоидные системы по своим молекулярно-кинетическим свойствам (броуновскому движению, диффузии, осмотическому давлению, седиментации) отличаются от растворов низкомолекулярных веществ главным образом лищь благодаря более значительным размерам своих частиц. Поэтому многие основные методы установления размеров частиц в коллоидных системах основаны на определении поступательной и вращательной диффузии (П.6 и П.7), осмотического давления (П.9), седиментации в поле тяготения (П. 11) и в ультрацентрифугах (П.14, II.15), вязкости (II.19). [c.47]

    Всякая взвешенная в жидкости дисперсная частица находится под действием двух сил силы тяжести и противоположно направленной силы диффузии, обусловливаемой броуновским движением частиц. Это приводит к определенному седимента-ционному равновесию (стр. 285). При слипании коллоидных частиц в агрегаты масса их увеличивается. В связи с этим броуновское движение постепенно замедляется и сила тяжести начинает преобладать над диффузией. В конце концов образуются крупные частицы, постепенно выделяющиеся из золя в осадок. Процесс осаждения укрупненных частиц твердой фазы называется седиментацией2. Таким образом, изменения в золе, как коллоидной системе, связанные с уменьшением степени дисперсности твердой фазы, проходят две главные стадии укрупнение частиц (собственно коагуляция) и выделение твердой фазы в осадок (седиментация). [c.306]

    При коагуляции вместе с уменьшением числа частиц и их укрупнением происходит изменение свойств растворов понижается скорость диффузии и фильтрации частиц, увеличивается окорость седиментации, изменяется вязкость, плотность системы. Вое это следует учитывать при практическом использовании коллоидных систем, в том числе глинистых и цементных раствэров. [c.40]

    Многие свойства дисперсных систем весьма сильно зависят от их дисперсности. Некоторые свойства проявляются сильнее при переходе от грубодисперсных к высокодисперсным системам, например, способность к диффузии и осмотическое давление. Другие свойства, наоборот, становятся заметнее с переходом от высокой дисперсности к низкой. К таким свойствам относится способность к седиментации (оседанию) частиц. Ряд свойств проявляется при промежуточных степенях дисперсности, отвечающих частицам коллоидных размеров. Это — светорассеяние, интенсиВ ность окраски коллоидных систем, кроющая способность пигмен- [c.22]

    Аэрозольная система всегда принципиально неустойчива и не может сохраняться в неизменном состоянии [47]. Особенностью аэрозолей является наличие у них лишь кинетической устойчивости. Агрегативной устойчивости они лишены полностью, и каждое соприкосновение их частиц или частицы и стенки приводит к слипанию (коагуляции). В отличие от коллоидных растворов, в аэрозолях отсутствуют силы, препятствующие сцеплению частиц между собой и с макроскопическими телами (например, со стенками сосуда) при соударениях. Разрушение аэрозолей происходит путем седиментации— оседания под действием силы тяжести, диффузии к стенкам, коагуляции и (в случае аэрозолей из летучих ве-ществ) испарения частиц. Старение и исчезновение аэрозоль-X I ной системы может быть вызвано также рассеянием ее либо под действием воздушных течений, либо вследствие одноимен-сной зарядки ее частиц. [c.17]

    Процесс оседания частиц под действием силы тяжести носит название седиментации. Скорость его находится в прямой зависимости от размеров частиц более крупные частицы оседают быстрее, чем мелкие. Диффузия же протекает с большей скоростью в случае более мелких частиц и замедляется с увеличением размера частиц. Если степень дисперсности мала (диаметр частиц больше 4 т ), то такие частицы не совершают броуновского движения и их способность к диффузии равна нулю. Здесь сила тяжести резко преобладает над силами диффузии. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, стремится к выравниванию концентраций во всем объеме дисперсной системы. Однако в достаточно толстых слоях полного выравнивания не достигается. Здесь в результате взаимодействия между силой тяжести и силой диффузии устанавливается некоторое состояние равновесия, характеризующееся постепенным уменьшением концентрации в направлении от нижних слоев к верхним. Это седиментационное равновесие оно характеризуется равенством скоростей седиментации и диффузии, когда через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком (в силу различной концентрации). Это явление наблюдается не только в коллоидных растворах, но и в молекулярнодисперсных системах. [c.352]

    Если в системе силы тяжести полностью уравновешены силами диффузии, наступает так называемое седиментационное равновесие, которое характеризуется равенством скоростей седиментации и диффузии. При этом через единицу поверхности сечения в единицу времени проходит вниз столько же оседающих частиц, сколько их проходит вверх с диффузионным потоком. Седиментационное равновесие наблюдается не только в коллоидных растворах, но и в молекулярно-дисперсных системах. Это равновесие характеризуется постепенным умеиь- [c.391]


Смотреть страницы где упоминается термин Диффузия и седиментация коллоидных систем: [c.51]    [c.639]    [c.51]    [c.113]    [c.328]   
Смотреть главы в:

Коллоидная химия -> Диффузия и седиментация коллоидных систем




ПОИСК





Смотрите так же термины и статьи:

Седиментация

Седиментация седиментации

Системы коллоидные



© 2025 chem21.info Реклама на сайте