Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение макроскопических систем

    Простейшей по своему строению макроскопической системой является газ. Газ может существовать, только будучи помещенным в некоторое замкнутое пространство, стенки которого препятствуют неограниченному разлету частиц газа — молекул или атомов. Если объем, приходящийся на одну частицу, достаточно велик, т. е. давление газа достаточно низко, то можно считать, что частицы взаимодействуют друг с другом только в момент соударения и что они настолько малы, что могут рассматриваться как точки. В этом случае газ называют идеальным. Из этих допущений методами статистической физики выводится уравнение для зависимости между давлением газа р, его абсолютной температурой и занимаемым им объемом (1.28). Это уравнение, первоначально найденное иа эксперимента, в дальнейшем будет записываться в виде.  [c.111]


    Главные особенности строения макроскопических систем связаны прежде всего с тем, что эти системы образованы из огромного множества частиц со своей внутренней структурой, а между этими частицами, в свою очередь, действуют определенные силы (например, нековалентные взаимодействия, рассмотренные в гл. 7). Такая структурная иерархия обусловливает своеобразие возбужденных состояний этих систем, так как наряду с внутренними состояниями отдельных частиц существуют относительные движения этих частиц, интенсивность и характер которых и определяют строение макроскопической системы в целом. В зависимости [c.122]

    Преимущество методов статистической термодинамики перед методами классической термодинамики заключается в том, что молекулярно-статистическим методом можно макроскопические свойства системы (константы равновесия, тепловые эффекты, теплоемкости и т. п.) связать со свойствами образующих систему частиц (молекул, атомов, ионов)—с их строением, потенциальной энергией и характером их движения. Так, зная зависимость потенциальной энергии молекулы адсорбата от координат, можно с помощью молекулярно-статистической теории вычислить термодинамические свойства. [c.507]

    Нг1 основании периодического закона сформировалось учение о периодичности, которое складывается из трех основных направлений. Первое устанавливает связь макроскопических свойств простых и сложных веществ со строением и свойствами атомов, составляющих эти вещества. Эта сторона учения о периодичности получила развитие с созданием теории строения атома. Второе направление связано со способом выражения закона в виде периодической системы элементов важнейшими в этой системе являются представления об индивидуальных свойствах, специфических (элементы — аналоги по группе, по ряду, по диагонали) свойствах и общих свойствах (формы соединений), а также о месте элемента в системе. Это направление нашло выражение в сравнительном методе изучения свойств элементов и их соединений. Им широко пользовался Д. И. Менделеев, оно применяется до сих пор. Третье направление — применение идеи периодичности к другим объектам ядрам атомов, элементарным частицам и т. д. [c.44]

    Курс состоит из двух частей. В первой рассматривается строение вещества. Здесь принят подход к химической системе как системе из взаимодействующих электронов и ядер, из которых формируются атомы, многоатомные частицы, а затем и макроскопические системы — вещества и их смеси (растворы). Чтобы показать в неразрывной связи со строением состояние соответствующих систем, авторы отказались от традиционного расположения материала. В частности, понятия внутренней энергии и энтропии вводятся в первой части курса в связи с изложением вопросов строения и состояния макроскопических систем. Это же относится к таким понятиям теории растворов, как предельно разбавленный и идеальный растворы, связанным именно с особенностями строения растворов, определяемого характером взаимодействия между частицами в растворе. Вторая часть курса содержит теорию химического процесса. Здесь рассматриваются термодинамика и кинетика химических реакций. [c.3]


    Состояние химических систем (как и любых других систем) может изменяться. Такие изменения называются процессами. Понятие процесса является одним из наиболее фундаментальных понятий для физической химии. Следует подчеркнуть, что строение и свойства химических систем проявляются именно в изменениях состояний систем. С химической точки зрения особый интерес представляют такие процессы, в которых происходит глубокая перестройка электронных состояний, сопровождаемая перегруппировкой ядер, так что из одних устойчивых одно- или многоатомных частиц образуются другие. В многокомпонентной макроскопической системе эти процессы приводят к химическому превраш,ению, в результате которого некоторые химические соединения — исходные веш,ества, или реагенты, превращаются в другие химические соединения — продукты. Химическую природу имеют также и многие другие явления, происходящие в химической системе, такие, как растворение, испарение ковалентных и ионных кристаллов и др., так как они также сопровождаются существенной перестройкой электронных оболочек. Как правило, химические превращения сопровождаются процессами, которые принято относить к области молекулярной физики переносом вещества и зарядов, переносом энергии термического возбуждения (теплоты) и др. [c.186]

    Анализируя состав и строение макроскопических биологических систем с точки зрения химии, не трудно убедиться, что системы состоят из некоторых фрагментов , не представляющих чего-ли- [c.346]

    Для макроскопических систем энергия не является непосредственно измеряемой величиной. Современная физика дает довольно подробную картину молекулярного строения макроскопического вещества, а теоретическая и экспериментальная физика позволяет различными методами определять уровни энергии или их разности для частиц в системе. Однако нри этом отсутствуют способы непосредственного измерения самой энергии системы в целом. Термодинамика позволяет с точностью до некоторой неопределенной постоянной вычислять эту величину из опытных данных. [c.12]

    Задача статистической физики — определение свойств макроскопической системы на основе свойств образующих ее частиц, законов их движения и взаимодействия. В отличие от феноменологической теории, возникшей независимо от атомистических представлений о строении вещества, статистическая физика базируется на этих представлениях и ставит своей целью ответ на вопрос о том, как законы микромира проявляются в наблюдаемом на опыте поведении систем, состоящих из большого числа частиц. [c.5]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    Энергию макроскопической системы можно определить, не обращаясь к представлениям о молекулярном строении реальных систем. Так построена классическая термодинамика, возникшая в то время, когда молекулярно-кинетическая теория относилась к числу недостаточно проверенных гипотез. В настоящее время положение дел существенно изменилось и основные результаты атомно-молекулярной теории, обоснованные опытом всей современной физики, можно считать не менее достоверными, чем законы термодинамики. [c.5]

    Любая макроскопическая система органических веществ при температурах около абсолютного нуля состоит из огромного числа молекул, постоянно испытывающих очень сложные ядерные движения. Но все же степень протекания реакции при равновесии может быть точно предсказана но изменению свободной энергии образования, экспериментальное определение которой не требует знания природы вещества [1]. Аналогично эмпирическая оценка параметров одной реакции может быть употреблена для сравнения и предсказания скорости других реакций даже (>ез знания подробностей форм ядерных двин<ений или типов столкновений, необходимых для возникновения и протекания реакции. Однако при определении термодинамических величин важны все молекулярные движения. При учете этих движений возможен теоретический расчет свойств простых молекул. Полного понимания влияния строения на реакционную способность нельзя ожидать до тех нор, пока в эмпирических параметрах скоростей не известны статистические составляющие молекулярных движений и столкновений. Сложность органических молекул чрезвычайно затрудняет решение такой задачи, и достижения в этой области иока незначительны. Дальнейшее количественное развитие возможно на основе некоторых соображений качественного характера о влиянии молекулярных движений на реакционную способность, что и рассматривается в данной главе. [c.564]


    Разработка общей теории и методов анализа неравновесных процессов и неравновесных состояний — главная задача и содержание неравновесной термодинамики. Эта задача сложна и пока далека от своего решения, но она имеет принципиальный характер. В отличие от термодинамики равновесных процессов, базирующейся на единственной и четко формулируемой модели, неравновесная термодинамика в настоящее время не располагает подобной теоретической основой. Более того, сейчас даже неясно, возможна ли аналогичная теоретическая унификация этой области. Как показано ниже, природа и характерные особенности многих неравновесных процессов определяются взаимообусловленностью статистических свойств макроскопической системы и конкретных свойств ее составляющих микроскопических частиц. И тем не менее в 50-х годах нашего столетия произошел решительный переворот во взглядах на неравновесные процессы были сформулированы общие положения, позволившие начать строить неравновесную термодинамику, не конкретизируя объект исследования с точки зрения его молекулярного строения. Суть происшедших сдвигов заключалась в осознании созидательных функций необратимых процессов в органическом и неорганическом мире. Это нашло отражение в трех сформулированных И. Пригожиным тезисах [318]. [c.442]

    Периодический закон был создан на основе анализа макроскопических свойств элементов и их соединений. Менделеев полагал, что периодический закон является отражением глубоких закономерностей строения веш,ества. Выражением периодического закона служит таблица, наглядно отражающая эти закономерности и получившая название периодической системы элементов Д. И. Менделеева. [c.22]

    Равновесность — более узкое понятие, оно применимо лишь для изолированных систем, для которых понятия стационарность и равновесность эквивалентны. В микроскопическом смысле под равновесным (стационарным) состоянием системы понимают такое ее состояние, когда при заданных и фиксированных макроскопических состояниях микроскопические параметры с точностью до малых флуктуаций, обусловленных молекулярным строением системы, однозначно определены и имеют конкретные численные значения. Подчеркнем, что это справедливо лишь для системы, находящейся в состоянии равновесия — для неравновесного состояния задание макроскопических параметров не определяет однозначно микроскопических свойств системы. Термодинамической вероятностью W называется число микроскопических, состояний, соответствующих одному и тому же макроскопическому состоянию. В отличие от математической вероятности Р, нормированной в пределах О < Р <С 1, термодинамическая вероятность, как число допустимых состояний может иметь любые численные значения в пределах 0< РУ<оо. [c.22]

    Сложнее обстоит дело у систем, которые не находятся в состоянии равновесия. Макросостояние таких систем приходится описывать параметрами, характеризующими состояние отдельных частей системы, и естественно число таких параметров будет значительно больше числа параметров, описывающих макросостояние при термодинамическом равновесии. Макроскопическое описание состояния, широко применяющееся в классической термодинамике, оставляет вне рассмотрения молекулярное строение системы. Реальное существование молекул и других частиц, из которых построены тела, делает возможным, по крайней мере принципиально, применять наряду с макроскопическим описанием состояния так называемое микроскопическое описание. Такое описание характеризует систему с помощью величин, определяющих возможно более детально состояние каждой частицы. Это описание будет различным в зависимости от того, можно ли применять к частицам системы законы классической механики или поведение частиц системы нужно рассматривать с точки зрения квантовой механики. Первые работы по статистической механике были выполнены при описании микросостояния с помощью классической механики, причем был получен ряд ценных результатов, но вскоре выяснилось, что применение последней оказывается законным только в предельных случаях. Более общие результаты, хорошо оправдывающиеся на опыте, получаются при применении квантовой механики. Статистическая физика, основанная на применении классической механики, оказывается частным случаем статистической физики, основанной на применении квантовой механики. [c.285]

    Этим не исчерпывается изучение явлений переноса. Коэффициенты связи — это макроскопические феноменологические коэффициенты (феномен — явление). Желательно отыскать возможности вычисления феноменологических коэффициентов с помощью известных или более легко и достаточно точно определяемых физических величин. Для этого, в свою очередь, нужно выявить микроскопические свойства систем, в которых происходит перенос. Они связаны с молекулярным строением и всеми взаимодействиями в системе. [c.180]

    Еще более перспективен и интересен метод молекулярной динамики для исследования структуры и расчета термодинамических свойств различных молекулярных моделей [7]. Этот метод также стал возможным лишь в век новой вычислительной техники. Сущность его заключается в интегрировании уравнений движения системы многих частиц, т. е. в использовании только механической модели молекулярной структуры вещества. Усреднение различных микроскопических величин вдоль траектории точки в фазовом пространстве позволяет найти макроскопические термодинамические величины. Но важнее всего то, что таким образом мы можем построить картину молекулярного строения газа или жидкости и исследовать ее флюктуацию и ее мелкие детали с большей точностью и более тонко, чем это можно сделать при анализе экспериментальных данных по рассеянию излучений. [c.333]

    Принцип причисления элементов к определенным группам в зависимости от электронного строения их атомов, а не в результате учета проявлений макроскопических свойств и подобия их позволяет при строгом его применении поместить Н и Не в I и П группы Системы. [c.115]

    Свертывание белковой цепи не может быть объектом рассмотрения классической равновесной термодинамики, поскольку последняя оперирует только усредненными характеристиками стохастических систем, обратимыми флуктуациями и функциями состояния, а поэтому ограничена изучением макроскопических систем с чисто статистическим, полностью неупорядоченным движением микроскопических частиц, взаимодействующих неспецифическим образом только в момент упругих соударений. Равновесная термодинамика в состоянии анализировать коллективное поведение множества частиц, не вдаваясь при этом в детали их внутреннего строения и не конкретизируя механизм равновесного процесса. Особенно важно отметить то обстоятельство, что для классической термодинамики все случайные флуктуации системы неустойчивы, обратимы и, следовательно, не могут оказывать заметного, а тем более конструктивного, воздействия на протекающие процессы. Все явления, самопроизвольно протекающие в изолированной системе, направлены, согласно термодинамике равновесных процессов, на достижение однородной системы во всех возможных отношениях. Сборка белка не отвечает основным положениям классической статистической физики эргодической гипотезе и Н-теореме Больцмана, принципу Больцмана о мультипликативности термодинамической вероятности и закону о равномерном распределении энергии по всем степеням свободы. Следование системой больцмановскому распределению вероятностей и больцмановскому принципу порядка, не содержащих механизма структурообразования из беспорядка, исключает саму возможность спонтанной сборки трехмерной структуры белка. Кроме того, невозможен перебор всех равноценных с точки зрения равновесной термодинамики и статистической физики конформационных вариантов. Даже у низкомолекулярных белков (менее 100 аминокислотных остатков в цепи) он занял бы не менее лет. В действительности же продолжительность процесса исчисляется секундами. Величина порядка 10 ° лет может служить своеобразной количественной мерой удаленности предложенных в литературе равновесных термодинамических моделей от реального механизма свертывания природной аминокислотной последовательности. [c.90]

    Желатинирование. Связанные вместе частицы образуют разветвленные цепочки, которые целиком заполняют объем золя. Поэтому не наблюдается повышение концентрации кремнезема в любой выбранной макроскопической области в среде системы. Вместо этого вся среда становится вязкой, а затем затвердевает в состоящую из связанных частиц сетку. Эта сетка благодаря своему капиллярному строению может удерживать жидкость. [c.497]

    В [1] для описания этого уровня организации полимеров предлагается ввести термин топологическая структура , под которым подразумевается тот уровень организации молекулярных цепей полимера и связи между их элементами, который можно выражать в виде графа без учета конкретного химического строения элементов. При таком описании полимер представляют в виде пространственной системы нитей, абстрагируясь от химической природы молекул полимера. С топологической точки зрения под сетчатыми, или трехмерными полимерами следует понимать такую полимерную систему, молекулы которой могут достигать макроскопических размеров и характеризоваться наличием большого числа разветвлений и циклов разного размера, т. е. могут представлять собой бесконечный циклический граф [1]. [c.54]

    В 38 было получено обш,ее выражение (38.22) для упругой энергии твердых растворов замеш,ения и внедрения. В нем учтено дискретное строение кристаллической решетки, упругая анизотропия среды и произвольный характер деформации, создаваемой каждым примесным атомом. Выражение (38.26) правильно описывает упругую энергию системы при любых распределениях примесных атомов, в том числе и при распределениях, характерные масштабы неоднородности /о в которых суш ественно больше, чем параметр кристаллической решетки а. В последнем случае дискретное строение криста.ллической решетки несуш,ественно сказывается па величине упругой энергии, и она может быть выражена чере.ч макроскопические константы континуального приближения и Uii(p) (поправки будут иметь порядок а/гд). [c.343]

    Оба эти эквивалентные определения предполагают, что соответствующие системы обладают термодинамическими свойствами и, следовательно, что к ним применимы такие статистические понятия, как температура, давление, объем. Отсюда вытекает, что фаза всегда должна состоять из достаточно большого числа частиц, т. е. иметь пространственную протяженность и достаточно большую массу. Это значит, что понятия гомогенность и гетерогенность следует рассматривать с макроскопической точки зрения, пренебрегая молекулярным строением тел и обусловленной этим принципиальной неоднородностью тел. [c.87]

    Пособие содержит изложение основных понятий, законов и методов физической химии, необходимых для углубленного и ускоренного усвоения неорганической, органической и биологической химии. Книга состоит из 2-х частей. Первая посвящена рассмотрению строения и состояния вещества, причем материал излагается в рамках единого подхода к вещсству как к. системе из взаимодействующих электронов и ядер, из которых образуются молекулы, а затем и макроскопические системы. Строго и достаточно просто разбирается ряд пс1Ложений квантовой механики и статистической физики, на которых базируется изучение строения и состояния вещества в современной химии. Во второй части рассмотрены термодинамика и кинетика химических процессов. [c.335]

    При работе над вторым изданием данного учебника авторы считали своей основной задачей дополнить его теми разделами, которые особенно остро необходимы для создания у будущих спе-циалистов-биологов полного фундамента физико-химических знаний. С этой целью написаны две новые главы — о процессах переноса (с главным акцентом на процессы диффузии, седиментации и электрической проводимости, гл. XVIII) и о поверхностных явлениях и дисперсных системах (составляющих предмет специального раздела физической химии, часто называемого коллоидной химией, гл. XVII). Кроме того, в гл. VIII (строение макроскопических систем) введен параграф ( 8.5) о высокомолекулярных соединениях. Остальные изменения представляют собой небольшие дополнения, уточнения в формулировках и некоторые перестановки, неизбежные при введении нового материала. При этом был учтен опыт работы с первым изданием и пожелания коллег. [c.4]

    Изменение энергии макроскопической системы в термодинамике удается определить, не обращаясь к представлениям о ее молекулярном строении. Частные формы первого закона термодинамики были установлены экспериментально, когда одно или несколько слагаемых в правой части уравнения (1.3) сохраняли по-стоятпюе значение. [c.17]

    Рассматриваемая здесь задача является качественно иной, имеющей смысл только для избранных, главным образом, природных аминокислотных последовательностей. Поэтому ее решение может быть вьпюлнено лишь на основе самостоятельной теории, учитывающей выработанную эволюцией конформационную специфику белков, а именно статистикодетерминистический механизм структурной самоорганизации и детерминистическую (в отношении как статических, так и динамических свойств) природу нативных конформаций белковых молекул. Стремление описать сборку белка с чисто статистических позиций, не учитывающих гетерогенности цепи и взаимообусловленности поведения макроскопической системы от внутреннего строения микроскопических составляющих, объясняется иллюзорным представлением о том, что в этом случае можно идти по уже проторенному для синтетических полимеров пути и тем самым избежать разработки несравненно более сложного статистико-детерминистического подхода. Однако традиционный поиск решения не отвечает самой сущности рассматриваемого явления, и, следовательно, все попытки дать чисто статистическую трактовку структурной самоорганизации белка следует признать, как отмечалось, обреченными на неудачу (см. разд. 1.3). [c.101]

    Сплавы. Характерной особенностью металлов является их способность смешиваться друг с другом в расплавленном состоянии и образовывать гомогенные смеси. Они остаются гомогенными и после охлаждения. Системы, образующиеся при загверде-нии расплавленной смеси металлов, называются сплавами. В более широком смысле сплавы можно рассматривать как макроскопически однородные системы, состоящие из двух или нескольких металлов (реже — металлов и неметаллов). Строение сплавов может быть различным. Составные части сплавов могут образовать твердый раствор, либо макроод-нородную механическую смесь, или же химическое соединение -(интерметаллические соедниения). Образование того или иного типа сплава зависит от активности металлов. Системы в виде твердых растворов образуются между металлами одной и той же группы или же металлами, у которых близки радиусы атомов. [c.261]

    My oplasma laidlflwii имеет порядок 10 . Ответ на вопрос заключается в том, что необходимая для жизни упорядоченность возможна лишь в макроскопической системе, в противном случае порядок разрушался бы флуктуациями. Наконец, Шредингер задавался вопросом об устойчивости вещества генов, построен-лого из легких атомов С, Н, N, О, Р, на протяжении множества поколений. Ответ на этот вопрос дала позднее молекулярная биология, установившая двуспиральное строение дезоксирибонуклеиновой кислоты (ДНК). [c.13]

    Желательно развить теорию изолированной системы с тем, чтобы можно было обсуждать ее поведени е (т. е. ее макроскопические свойствау в зависимости от ее состава и строения (т. е. в зависимости от составляющих систему атомов или молекул и их квантовых состояний). Ограничим обсуждение макроскопическими системами, содержащими очень большое число идентичных атомов или молекул, а также в некоторых случаях смесь атомов или молекул различного вида. [c.312]

    Принято считать, что термодинамика как особая область естественнонаучных знаний возникла потому, что в природе существуют макроскопические явления, которые не зависят от деталей внутреннего устройства микроскопических частиц. Такие явления, однако, в чистом виде практически не наблюдаются, и правильнее будет сказать, что появление этой науки вызвано существованием общих закономерностей в характере поведения макроскопических систем, которые определяются главным образом беспорядочным тепловым движением колоссального числа микроскопйческих частиц, а не конкретным строением отдельных частиц и их взаимодействием. Исходной моделью классического термодинамического подхода как к феноменологическому описанию тепловых явлений, так и к их статистической трактовке явилась модель идеального газа— системы материальных точек, упруго взаимодействующих друг с другом только в момент соударения. То обстоятельство, что в поведении идеального газа проявляются чисто статистические закономерности, позволило обойти нереальный механический подход к описанию макроскопической системы и перейти к ее сокращенному статистическому описанию, получившему название термодинамического подхода. Эта модель и стала основным объектом исследования статистической физики. Поэтому, строго говоря, классическая термодинамика — наука о равновесных состояниях и равновесных процессах идеального газа в условиях его изоляции. Такое определение термодинамики звучит несколько парадоксально, поскольку равновесных процессов и изолированных идеальных систем в природе нет, а, напротив, наблюдаются только неравновесные процессы, как, например, фазовые переходы и другие превращения, и помимо газов, имеются жидкости, твердые тела и иные сложные системы, причем отнюдь не изолированные, а всегда взаимодействующие с окружающей средой. Иными словами, существует то, что как будто бы не должно входить в компетенцию равновесной термодинамики, а то, чем она владеет, на первый взгляд, не имеет прямого отношения к реальному миру. В чем же тогда причина широчайшего распространения термодинамического подхода в естественных науках и технике  [c.440]

    Говоря о строении какой-то системы, обычно имеют в виду некоторую относительно устойчивую пространственную ее конфигура-цию, т. е. взаимное расположение образующих ее частиц, обусловленное существующими между ними связями вследствие присущих этим частицам сил взаимодействия . Однако даже в химических микросистемах говорить о жесткой пространственной структуре не приходится. Уже в атомах мы сталкиваемся с делокализацией электронов, В простых молекулах наряду с делокализацией электронов, приводящей к образованию химических связей, имеет место и делокализация атомных ядер в результате колебаний, в сложных молекулах к этому добавляется взаимное вращение одних частей молекулы относительно других, приводящее к образованию множества конформаций. Последнее особенно явно представлено в молекулах полимеров, с чем связаны многие их фундаментальные свойства. Чем сложнее система (чем больше число образующих ее частиц), тем больше многообразие возможных состояний, в которых она может находиться при нозбужденин, т. е. при получении энергии. Наиболее упорядоченную структуру система имеет в основном состоянии, т. е. в состоянии с минимально возможной энергией. Чем выше энергия возбуждения, представляющая собой энергию относительного движения составляющих систему частиц, тем больше относительные перемещения этих частиц (если движение можно рассматривать классически) или их делокализация (если. движение имеет квантовый характер). Возбужденные молекулы подвержены разного рода колебаниям и внутренним вращениям одних фрагментов относительно других, а при достаточно высоких энергиях химические связи разрываются, и система приобретает качественно иной структурный облик. Роль вышеуказанных структуроопределяющих факторов неизмеримо возрастает для макроскопических систем. [c.122]

    Системы, представляющие физико-химический интерес, например, такие, как капля жидкости или отдельный кристалл, содержат огромное число частиц молекул, атомов, ионов и электронов. Естественно, что логически обоснованным щагом при теоретической разработке физической химии была попытка применить принципы динамики к системам, которые содержат большое количество мельчайших частиц при этом исходили из предиоло-жепия, что каждая из этих частиц подчиняется законам классической механики, выведенным для больших тел. Этот шаг сделала классическая статистическая механика, основываясь на представлениях об атомном строении материи, законах движения Ньютона и некоторых аксиомах теории вероятностей. Возникновение квантовой механики (см. гл. III и IV) привело к неожиданному выводу, что законы, описывающие поведение макроскопических и микроскопических тел, различны. И все же существуют широкие пределы экспериментальных условий, при которых макроскопические и микроскопические тела подчиняются одним и тем же законам именно эти случаи и рассматриваются в данной главеТПри этом из класситеского материала, сохранившегося ири квантовом землетрясении , отобрано лишь то, что не утратило своей ценности дпя физической химии. [c.33]

    Нелинейная неравновесная термодинамика осуществила синтез вероятности и необходимости, кумулятивного развития и скачкообразных изменений, физической концепции развития Клаузиуса и эволюционной теории Дарвина, равновесной термодинамики, изучающей макроскопическое проявление множественных систем вне связи с конкретным механизмом, свойствами и строением микросоставляющих, и классической физики (как и квантовой механики), изучающей детали процессов, свойства и строение микро- и макросистем, состоящих из малого числа компонентов. Новая область знаний собрала воедино то, что было разъято на составные части, и установила соотношения между тем, что противопоставлялось друг другу, казалось взаимоисключающим или отрицалось как иллюзия или результат неполного знания. Представление о мире исключительно как о стационарной системе, в которой необходимость порождает только необходимость, оказалось несостоятельным и было опрокинуто многочисленными фактами из всех областей естествознания. Мир явился качественно многообразным, темпоральным, полным случайных и непредсказуемых [c.10]

    Во-первых, крайне затруднительно дать достаточно строгое обоснование возможности расчета удельной поверхностной электропроводности и потенциала на основе макроскопических измерения в капиллярно-пористых системах. Теоретические расчеты Фридрихсберга, проведенные применительно к модельным системам, иллюстрируют возможность преодоления этой трудности при определенном строении ка-пиллярно-пористого тела. Но применительно к общему слзгчавд строения капиллярно-пористого тела такое обоснование, по-видимому, невозможно. [c.100]


Смотреть страницы где упоминается термин Строение макроскопических систем: [c.9]    [c.442]    [c.63]    [c.5]    [c.25]   
Смотреть главы в:

Физическая химия -> Строение макроскопических систем

Физическая химия 1990 -> Строение макроскопических систем




ПОИСК







© 2025 chem21.info Реклама на сайте