Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсные системы оптические свойства

    При это.м предполагается, что система частиц абсолютно моно-дисперсна относительно оптических свойств частиц. При наличии оптической полидисперсности в системе угол ориентации может весьма сильно зависеть от оптических свойств компонентов (см. 7 этой главы). [c.508]

    От удельной поверхности зависят некоторые свойства дисперсной системы механические свойства, теплопроводность, звукопроницаемость, оптические свойства и т. п. [c.161]


    Наибольшее распространение в практике спектроскопического изучения адсорбции получил способ съемки спектров поглощения на просвет. В этом случае для получения истинной кривой поглощения вещества необходимо исключить рассеяние и собственное излучение образца. Последнее незначительно, так как в связи с низкой мощностью используемых источников излучения температура образца в пучке обычно не превышает 70—80°С. Основные потери световой мощности связаны с диффузным рассеянием. Величина этого эффекта зависит от длины волны и интенсивности используемого излучения и с другой стороны — от дисперсности и оптических свойств исследуемой системы (высокодисперсные порошки). [c.283]

    В зависимости от соотношения между диаметром 2г частиц дисперсной фазы и длиной волны к, проходящей через дисперсную систему, оптические свойства системы меняются. [c.502]

    Учение о коллоидах было выделено как самостоятельное направление научных исследований немногим более ста лет назад и развивалось на стыке физики и химии. По сути, предметом рассмотрения были дисперсные системы с определенными пределами размеров дисперсной фазы. Направлениями исследований коллоидных систем явились диффузия, сорбция, вязкость, электропроводность, оптические и поверхностные свойства, устойчивость против расслоения и многие другие. Важным разделом коллоидной химии считается коллоидная механика, преобразованная в физико-химическую механику дисперсных систем, изучающая структурообразование в дисперсных системах и их структурно-механические свойства. [c.13]

    Указанные явления приводят к изменению оптических свойств дисперсной системы, в которой анизометрические частицы ориентированы. Эти эффекты настолько велики, что часто могут наблюдаться без помощи специальных приборов, давая возможность делать качественные заключения о форме частиц. В этом отношении методы, основанные на ориентации частиц, более удобны по сравнению со сверхсложными и тонкими методами исследования неориентированных анизометрических частиц. [c.30]

    Очень часто природные растворы ведут себя как коллоидно-дисперсные системы с характерными для коллоидных растворов оптическими и физико-химическими свойствами. Подобные растворы активно участвуют в образовании коры выветривания почвенного покрова, а также в образовании осадочных пород и руд. [c.97]

    Современная коллоидная химия включает следующие основные разде.ты 1) молекулярно-кинетические явления (броуновское движение, диффузия) в дисперсных системах гидродинамика дисперсных систем дисперсионный анализ 2) поверхностные явления адсорбция (термодинамика и кинетика), смачивание, адгезия, поверхностно-химические процессы в дисперсных системах строение и свойства поверхностных (адсорбционных) слоев 3) теория возникновения новой (дисперсной) фазы в метастабильной (пересыщенной) среде конденсационные методы образования дисперсных систем 4) теория устойчивости, коагуляции и стабилизации коллоидно-дисперсных систем строение частиц дисперсной фазы (мицелл) 5) физико-химическая механика дисперсных систем, включающая теорию механического диспергирования, явления адсорбционного понижения прочности твердых тел, реологию дисперсных систем образование и механические свойства пространственных структур в дисперсных системах 6) электрические и электрокинетические явления в дисперсных системах 7) оптические явления в дисперсных системах (коллоидная оптика)—светорассеяние, светопоглощение коллоидная химия фотографических процессов. [c.281]


    Здесь уместно указать, что наряду с типичными необратимыми и обратимыми системами, согласно классификации Зигмонди и Фрейндлиха, существуют и промежуточные системы, которые трудно отнести к какому-нибудь одному из обоих классов. Это, например, золи гидроокисей некоторых металлов А1(0Н)з, Ре(ОН)з, 5п(ОН)4. Исследование с помощью оптических методов указывает на присутствие в этих системах коллоидных частиц (агрегатов молекул). Имеются и другие основания считать эти системы гетеро-генными. Вместе с тем эти системы обратимы, могут быть получены с достаточно большой концентрацией дисперсной фазы и менее чувствительны к электролитам, чем типичные лиофобные системы. Такие свойства этих систем обычно объясняют исключительно большой гидратацией содержащихся в них частиц. Однако в последнее время ряд исследователей стали считать, что в этих системах в зависимости от способа получения дисперсная фаза может находиться как в виде коллоидных частиц, так и в виде макромолекул. Природа этих растворов до сих пор окончательно не ясна. К этому вопросу мы еще возвратимся в гл. IX и XIV. [c.27]

    Особые оптические свойства дисперсных систем обусловлены их главными признаками дисперсностью и гетерогенностью. Дисперсные системы неоднородны по фазовому составу, поэтому обладают и оптической неоднородностью. На оптические свойства дисперсных систем в большой степени влияют структура, размер и форма частиц. На этом основано применение оптических методов для изучения частиц в широком диапазоне дисперсности, от невидимых в оптический микроскоп до грубодисперсных. [c.388]

    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]

    В учебнике изложены основные сведения о дисперсных системах (классификация, очистка от низкомолекулярных примесей, молекуляр-но-кинетические свойства), поверхностных явлениях, адсорбционных процессах, электрических и оптических явлениях и дисперсных средах, устойчивости коллоидных систем, структуро- II мицеллообразовании. Рассмотрены свойства высокомолекулярных соединений и их растпоров. [c.240]

    Часто природные растворы ведут себя как коллоидно-дисперсные системы, с характерными для коллоидов молекулярно-кинетическими и оптическими свойствами (глава X). Устойчивость коллоидных частиц в таких растворах существенно возрастает при попадании в них различной природы высокомолекулярных органических веществ, в частности гумусовых веществ, возникающих при неполном разложении растительных остатков. Природные коллоидные растворы участвуют в образовании коры выветривания почвенного покрова, зоны окисления, а также в образовании осадочных пород и руд. [c.160]

    Итак, исследование молекулярно-кинетических и оптических свойств позволяет определять одну из важнейших характеристик дисперсных систем — размеры частиц дисперсной фазы, или степень дисперсности системы. Размеры коллоидных частиц можно найти, определив коэффициент диффузии для данной коллоидной системы. Размеры их можно установить также ультрамикроскопическими и нефелометрическими наблюдениями или с помощью электронного микроскопа. Измеряя скорость седиментации частиц в грубодисперсных системах, также можно определить и степень их дисперсности. [c.47]

    По мере изменения размеров частиц от наиболее крупных к мелким и обратно будут соответственно изменяться и свойства дисперсных систем кинетические, оптические, каталитические и др. При этом коллоидные системы занимают как бы промежуточное положение между грубыми и молекулярно-дисперсными системами (табл. 29). [c.111]

    Коллоидное состояние характеризуется определенной дисперсностью (раздробленностью) вещества. Вещество в этом состоянии диспергировано до очень малых частиц или пронизано тончайшими порами эти частицы и поры невидимы в оптическом микроскопе, но превышают по размерам обычные молекулы. Поскольку раздробленное вещество находится всегда в какой-либо среде, с которой оно в большей или меньшей степени взаимодействует, свойства его нельзя рассматривать в отрыве от этой среды. Следовательно, коллоидные или дисперсные системы состоят из двух (или более) фаз дисперсной фазы (одной или нескольких)—совокупности частиц или пор — и дисперсионной среды, т. е. являются гетерогенными. Таким образом, коллоиды — это не вещества (как считали раньше), а гетерогенные системы, содержащие вещества в высокодисперсном состоянии. [c.5]


    Варианты анализа высокодисперсных систем уже рассмотрены нами в предыдущих главах. Они основаны на изучении молекулярно-кинетических и оптических свойств — диффузии, осмотического давления, среднего сдвига частиц, светорассеяния (нефелометрия, ультрамикроскопия), седиментационно-диффузионного равновесия (ультрацентрифуга), а также на применении методов электронной микроскопии и дифракции электронов. Эти методы дают сведения главным образом о среднем размере частиц. Для многих целей такая характеристика является достаточной, тем более что в коллоидных системах вариации дисперсности обычно не очень велики. [c.45]

    Описание реологических свойств строится на основе различных моделей, в частности, цепочечной модели, развитой Бибиком и Лавровым при течении дисперсной системы через поперечное электрическое или магнитное поле в ней возникают поляризованные цепочки частиц, текущие как одно целое поляризация изменяет не только оптические (см. раздел XII. 7), но и реологические свойства дисперсий, изучение которых позволяет выявить физический смысл важнейших параметров (таких как Ха в (XIV. 6), т в (XIV. 11) и др.). [c.276]

    К отличительным особенностям дисперсных систем, в которых размер частиц дисперсной фазы значительно меньше длины волны видимого света или соизмерим с ней по порядку величины, относятся их характерные оптические свойства. Изучение особенностей прохождения света через различные системы позволяет определять в них наличие, концентрацию и анализировать строение частиц дисперсной фазы. Теория оптических свойств дисперсных систем представляет собой сложную и основательно разработанную область современной физики. Однако она не позволяет полностью описать все детали оптических свойств, особенно грубодисперсных и высококонцентрированных систем. В рамках данного курса будут рассмотрены физические основы наиболее характерного из оптических свойств — рассеяния света частицами с размером, значительно меньшим длины волны (рэлеев-ское рассеяние), и качественно описаны более сложные случаи рассеяния и поглощения света частицами большого размера, а также роль флуктуаций прн взаимодействии света с дисперсными системами. [c.159]

    Ряд специфических оптических свойств наблюдается в системах с частицами дисперсной фазы, обладающими анизотропией поляризуемости. При этом ось диполя, наведенного первичной волной в частице, не совпадает с направлением вектора электрической напряженности падающей световой волны. Это приводит к тому, что при освещении системы поляризованным светом дипольные моменты, возникающие в хаотически расположенных частицах, направлены под различными углами к исходному направлению поляризации, и во вторичной световой волне появляются компоненты света с перпендикулярной поляризацией — происходит частичная деполяризация света (рис. VI—9). Возможны и другие причины частичной деполяризации света при рассеянии, детально рассмотренные Кришнаном. [c.167]

    В феррожидкостях, как и в любых других дисперсных системах, могут иметь место различного рода коагуляционные явления и структурные превращения. В данном случае под ними понимаются явления, заключающиеся в нарушении статистически равномерного расположения частиц в пространстве. Классификация и систематическое описание подобных явлений приведено в подразделах 3.11-3.13, а описание их влияния на магнитные свойства — в подразделе 3.9. Здесь рассматриваются экспериментальные данные о влиянии структуры магнитных коллоидов на их оптические и реологические свойства. [c.758]

    При турбидиметрических измерениях законы колориметрии применимы лишь в том случае, если измеряются очень разбавленные дисперсные системы и если сопоставляются мутные среды, имеющие одинаковую форму частиц и одинаковую дисперсность. Для получения осадков с одинаковыми оптическими свойствами необходимо строго соблюдать постоянство температуры, порядка и скорости смешива- [c.94]

    Оптические свойства. Частицы дисперсной фазы коллоидной системы рассеивают падающий на них свет. Причиной рассеяния света является оптическая неоднородность коллоидных систем, т. е. разные оптические свойства дисперсной фазы и дисперсионной срсды. Пз этих сво11ств прежде всего следует указать показатель преломления, значение которого для дисперсной фазы и дисперсионной срсды различны. Вследствие этого луч света, проходя через дисперснониуга среду и попадая на частицу дисперсной фазы, обязательно изменяет свое направление, причем тем резче, чем больше показатель преломления дисперсной фазы отличается от показа-те. 1я преломления дисперсионной среды. Рассеяние света коллоид-И1.1МИ системами может быть различным в зависимости от соотно- [c.196]

    Лекция 10. Оптические свойства. Злектрокинетичеокие явления в дисперсных системах. Устойчивость дисперсных систем, седимен-тационный анализ. [c.217]

    Специфика оптических свойств объектов коллоидной химии определяется их осповнымп признаками гетерогениостыо и дисперсностью. Гетерогенность, или наличие межфазной поверхности, обусловливает изменение наиравления (отрал<ение, преломление) световых, электронных, нонных и других лучей на границе раздела фаз и неодинаковое поглощение (пропускание) этих лучей сопряженными фазами. Дисперсные системы обладают фазовой и соответственно оптической неоднородностью. Лучи, направленные на микрогетерогенные и грубодисперснЕ е системы, падают на поверхность частиц, отражаются и преломляются под разными углами, что обусловливает выход лучей из системы в разных направлениях. Прямому прохождению лучей через дисперсную систему препятствуют также их многократные отражения и преломления прн переходах от частицы к частице. Очевидно, что даже при отсутствии поглощения интенсивность лучей, выходящих, из дисперсной системы, будет меньше первоначальной. Уменьшение интенсивности лучей в направлении их падения тем больше, чем больше неоднородность и объем системы, выше дисперсность и концентрация дисперсной фазы. Увеличение дисперсности приводит м дифракционному рассеянию лучей (опалесценции). [c.245]

    Принимая во внимание многочисленные литературные данные, касающиеся экспериментальных и теоретических исследований поведения фуллере-яов в растворах, можно отметать, что многие необычные оптические, термоди-яамические, кинетические и другие свойства этого объекта объясняются явле-яием образования кластеров фуллеренов в растворах. Таким образом, рассматривая с единых позиций поведение фуллеренов в растворах, можно утверждать, что феномен кластерного состояния фуллеренов в среде растворителя является основополагающим и обусловливающим всю совокупность свойств, характеризующих данные системы. Рассматривая систему фуллерены - растворитель в целом, справедливо заметить, что такие термины, как фуллерены в растворах , раствор фуллеренов и им подобные, являются не вполне уместными для ее писания. Тем более неприемлемо применение к ним закономерностей, описывающих неведение нормальных растворов. Состояние рассматриваемой систе-иы можно более точно определить как наносуспензия , где присутствуют сво-гго рода дисперсная фаза - фуллерены и дисперсионная среда - органический растворитель. Насколько известно, это единственная ситуация, где размеры частиц дисперсной фазы имеют такие малые размеры (до 2,5 нм для С60 [31 ] и цо 3 нм для С70 [32]). Вполне вероятно, что для всестороннего описания пове-цения данных систем потребуется учет совокупности закономерностей, описывающих дисперсные системы, нормальные растворы, кластерное состояние вещества, поверхностные явления, поведение систем в критических точках (при описании образования и роста фрактальных кластеров фуллеренов в растворах) и др. [c.53]

    Изменение дисперсности (размеров частиц) в результате коагуляции можно обнаружить но изменению оптических свойств системы, в частности по изменению интенсивности светорассеяния (опалесценции). С увеличением размеров частиц увеличивается интенсивность рассеянного света когда размеры частиц становят-120 [c.120]

    С изменением размеров частиц от наиболее крупных (грубодисперсных) к мелким соответственио изменяются кинетические, оптические, каталитические и другие свойства. Коллоидно-дисперсные системы являются как бы промежуточными между грубыми и молекулярноионными системами, что хорошо видно из приведенной ниже таблицы. [c.146]

    Микрогетерогенные и ультрамикрогетерогенные дисперсные системы благодаря соизмеримости частиц дисперсной фазы с длиной световых волн обладают специфическими оптическими свойствами. Это позволяет использовать оптические методы исследования для изучения структуры и формы частичеи , скорости их перемещения, размеров и концентрации. Оптические методы широко используются в практике определения концентрации коллоидных растворов, эмульсий, аэрозолей. Оптические характеристики аэрозолей (туманы, тучи, пыль), степень мутности водоемов имеют большое значение для авиации, метеорологии, контроля загрязнения окружающей среды. [c.388]

    У аэрозолей вследствие более резкого различия в плотностях дисперсной и дисперсионной фаз по сравнению с другими дисперсными системами более резко вцражаются некоторые свойства, характеризующие дисперсные системы, например оптические. Благодаря ярко выраженному светорассеянию, наблюдаемому в аэрозолях, их применяют для создания дымовых завес. [c.247]

    Из электростатики известно, что под влиянием поля диполи приобретают преимущ,ественную ориентацию. ИДМ дисперсной частицы не может быть в этом отношении исключением. При анизо-метричности частицы воздействие внешнего поля ориентирует ее длинной осью вдоль поля. При иной ориентации воздействие поля на ИДМ порождает пару сил, под действием которой частица вращается, приближаясь к устойчивой ориентации. Этот электро-ориентационный эффект порождает электрооптические явления. Электрооптическими явлениями называются изменения оптических свойств дисперсной системы под влиянием электрического поля. [c.226]

    Аналогично и для других флуктуирующих величин средний квадрат флуктуации равен отношению кТ ко второй производной приращения свободной энергии системы (работы флуктуации) по флуктуирующему параметру. В дальнейшем подобный подход будет использован при описании оптических свойств дисперсных систем (см. гл. VI),, при рассмотрении электрических свойств аэрозолей (см. 1 гл. X) и условий образования критических эмульсий (см. 2 гл. VIII). [c.147]

    Продолжается активное развитие ряда фугих направлений коллоидно-химической науки и смежных областей знания учения об аэрозолях (играющего важную роль в создании методов защиты окружающей среды от загрязнения) физикохимии электроповерхностных явлений, включая коллоидно-химические аспекты борьбы с коррозией термодинамики поверхностных явлений и фазовых равновесий в дисперсных системах, теории электрокинетргаеских и оптических свойсгв коллоидных дисперсий изучения коллоидных свойств дисперсий ВМС (включая методы получения полимерных покрытий, особенности латексной полимеризации) исследований специфических коллоидно-поверхностных эффектов в кристаллах особенностей смачивания и других поверхностных явлений в высокотемпературных системах. Энергично развивается физико-химическая механика природных дисперсных систем (глинистые минералы, уголь, торф и др.) конструкционных и строительных материалов (стали, сплавы, керамика, материалы на основе минеральных вяжущих веществ) контакта твердых поверхностей, трения, смазывающего действия. [c.14]

    Оптические, в том числе визуальные методы наблюдения являются самым доступным средством изучения, идентификации и диагностики самых разных веществ и явлений. Перечень оптических свойств и методов контроля состава веществ и происходящих в них процессов достаточно обширен. Все они в той или иной мере применимы и к дисперсным системам. Простое перечисление существующих оптических свойств и явлений принесет мало пользы, а приемлемое по полноте описание слишком далеко уведет нас от основного предмета изучения — коллоидов. Поэтому сосредоточим внимание на одном уникальном оотическом свойстве коллоидов — способности рассеивать свет [35]. Если некоторая оптическая среда рассеивает свет, то это однозначно указывает на ее коллоидную природу. Если некоторый состав является коллоидным, то он непременно должен рассеивать свет. Никакие однородные среды не обладают способностью рассеивать свет. Другие оптические явления будут упоминаться только в той мере, в какой это необходимо для понимания тех или иных аспектов светорассеяния. [c.745]

    Для получения двухкомпонентных систем с желаемыми свойствами (физическими и оптическими) необходимо выбрать метод их приготовления. Обычно такие полимерные системы состоят из двух отчетливо разделяемых фаз, причем небольшое количество частиц привитого каучука диспергировано в твердой матрице стеклообразного полимера или смолы (рис. 1). Часто две фазы образуют взаимно-проникаюш,ие сетки, и ни одна из них не является дисперсной системой (рис. 2). В зависимости от способа приготовления двухфазных систем они могут представлять собой либо механические смеси полимеров, либо привитые сополимеры. [c.168]

    Дальнейшая разработка метода молекулярных пучков, предложенного Семеновым и Шальниковым [1], а также Богданди, Бемом и Поланьи [2], привела Рогинского и Шальникова [3] к открытию нового метода получения коллоидальных систем совместной конденсацией на охлажденной жидким воздухом поверхности паров компонентов системы. Смешение этих компонентов в состоянии крайне высокой степени дисперсности приводит, по крайней мере в первой стадии процесса — до плавления полученного коллоидального льда ,— к высокой дисперсности системы, а то обстоятельство, что весь опыт протекает в высоком вакууме, позволяет получать и изучать коллоиды, которые хотя и были получены раньше [4—6], но обладали очень малой продолжительностью жизни и немедленно разлагались при соприкосновении с воздухом, что делало невозможным изучение их коллоидных, электрохимических, оптических и прочих свойств. [c.149]

    Можно считать, что классификация растворов, да1шая Оствальдом и основанная на различии размеров частиц растворенного вещества, в настоящее время является недостаточной. Несомненно, что все системы, содержащие частицы большого размера, независимо от их природы, будут обладать рядом общих свойств, и мы объединим их термином коллоиды лишь в этом смысле. Однако большинство свойств коллоидов, как то адсорбционные процессы, явления пептизации и коагуляции, оптические свойства и т. п., связывается с микрогетерогенностью коллоидных растворов и с определением коллоидных частиц как агрегатов, состоящих из большего или меньшего количества молекул и обладающих поверхностью раздела. К собственно коллоидным системам большинство исследователей относит именно системы, в которых частицы представляют собой подобные агрегаты в отличие от истинных растворов, содержащих вещество в молекулярной стенени дисперсности. При этом размеры молекул истинно-растворенного вещества, обладающего большим молекулярным весом (например, истинно-растворенные красители), могут иметь большие размеры, чем частицы тонко диспергированных коллоидов, как, например, золото или окись железа (15—20 А). Наконец в случае высокомолекулярных веществ мы имеем молекулы с молекулярным весом в несколько десятков и даже сотен тысяч, которые, по терминологии Оствальда, должны быть отнесены к коллоидным частицам. В то же время эти высокомолекулярные вещества могут присутствовать в растворе в виде отдельных молекул. Возникает вопрос, должны ли мы рассматривать растворы соединений с большим молекулярным весом как растворы коллоидные или же мы можем точнее передать их свойства, описывая их как истинные растворы Этот вопрос является одним из основных, хотя некоторые исследователи, как, например, Кройт [11, рассматривая коллоидные процессы, сознательно воздерживаются от обсуждения этого вопроса. [c.242]


Смотреть страницы где упоминается термин Дисперсные системы оптические свойства: [c.198]    [c.377]    [c.304]    [c.154]    [c.97]   
Курс общей химии (1964) -- [ c.133 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Дисперсные оптические

Дисперсные системы

Оптические свойства

Оптические свойства свойства

Системы свойства



© 2025 chem21.info Реклама на сайте