Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение свойств при образовании растворов

    Так как химический потенциал компонента в различных фазах равновесной системы имеет одну и ту же величину, то в уравнениях (V, 30), (V, 30а) и (V, 31) летучести относятся к компонентам в любой фазе системы, а числа молей и мольные доли—к какой-либо одной из фаз. Если имеется равновесие бинарного жидкого (или твердого) раствора с его насыщенным паром, а последний—идеальный раствор идеальных газов, то в уравнении (V, 31а) можно мольные доли х и отнести к газовой фазе или к жидко-му раствору. В первом случае уравнение (V, 31а) приводится к особой форме уравнения Дальтона (в чем легко убедиться) и может быть использовано как таковое. Во втором случае, определив изменения парциальных давлений компонентов жидкого раствора с изменением его состава, можно найти изменение химических потенциалов компонентов жидкого раствора с его составом. Знание зависимости 1пД-(1пр,.) или l от состава раствора дает возможность вычислять многие термодинамические свойства раствора при данной температуре, а изучение тех же величин при различных температурах приводит к расчету теплот образования раствора. [c.182]


    Методы, связанные с изменением свойств коррозионной среды. К ним относятся уменьщение концентрации компонентов среды, особенно опасных в коррозионном отношении (например, удаление растворенного в воде кислорода, подщелачивание раствора и т. п.) добавка специальных веществ — ингибиторов коррозии, которые оказывают тормозящее действие на коррозию. Оно связано или с окислением поверхности металла (нитриты, хроматы), или с образованием пленки труднорастворимого соединения между металлом и данным ингибитором (фосфаты, гидрофосфаты). В кислых растворах в качестве ингибиторов коррозии используют органические вещества, содержащие амино-, ИМИН0-, тио- и другие группы их действие связано с образованием защитной адсорбционной пленки органического вещества на поверхности металла. [c.403]

    Взаимодействие бумаги с краской имеет сложный механизм. Существенное влияние на качество оттиска оказывает взаимодействие компонентов краски, в частности растворителя и высокомолекулярного вещества, растворителя и пигмента-сажи. Несомненно, на этот процесс оказывает влияние взаимодействие между двумя видами дисперсной фазы в краске, сформированными структурными образованиями высокомолекулярных соединений и углеродным пигментом. Подобные вопросы в литерату эе практически не рассматривались и были поставлены в связи с современным этапом развития коллоидно-химической технологии нефтяного сырья. Рассматривая с этих позиций превращения в композициях краски, можно предположить возможность сорбции высокомолекулярных веществ на саже, выделение фазы из межчастичного пространства сажевых агрегатов и, наконец, образование двух несме-шивающихся видов дисперсной фазы в растворе. Указанные превращения играют решающую роль в поведении краски и должны учитываться при выборе оптима чь-ных компонентов красок и решении рецептурной задачи. Были изучены закономерности в реологических свойствах наполненных и ненаполненных сажей растворов высокомолекулярных соединений нефти в минеральных маслах, количественные характеристики удерживающей способности высокомолекулярных соединений нефти по отношению к минеральным маслам, закономерности изменения устойчивости получаемых растворов, определены параметры взаимодействия в этих растворах между высокомолекулярным веществом и пигментом. Практическим выходом работы явилось создание новой рецептуры черной печатной газетной краски на базе побочных продуктов процессов переработки нефти. [c.252]

    Изменение свойств при образовании растворов [c.135]

    Концентрированные растворы. Простейшие соотноше ния между различными свойствами концентрированных растворов и их составом существуют, естественно, в тех случаях, когда между молекулами компонентов не происходит каких-нибудь взаимодействий химического характера, когда компоненты раствора в свободном состоянии мало разнятся между собой по свойствам и молекулы их обладают одинаковым или близким составом, мало отличаются между собой по величине и достаточно близки по структуре. В качестве примера можно привести смеси изомеров (гексан и изогексан) или гомологов, не слишком далеко отстоящих один от другого в гомологическом ряду, например бензол и толуол. В подобных растворах молекулы каждого компонента находятся в условиях, мало отличающихся от условий, в которых они находились в чистом компоненте. Поэтому их свойства не претерпевают сколько-нибудь значительных изменений. Образование подобных растворов не сопровождается ни тепловыми эффектами, ни изменением объема. Теплоты испарения компонентов из раствора остаются такими же, какими они были для чистого компонента. Зависимость свойств раствора от его состава и концентрации при этом оказывается наиболее простой. [c.306]


    Итак, влияние примесей на величину к может быть связано с изменением концентрации вещества в прилегающей к поверхности твердой фазы пленке раствора, с изменением взаимодействия находящихся в растворе ионов и молекул с растворителем и с образованием твердых растворов. Если влияние примесей, связанное с изменением свойств самого раствора, не требует особых пояснений, то изменение гигроскопической точки в связи с образованием твердых растворов не самоочевидно и требует дополнительного изучения. [c.146]

    Это процесс постепенного накопления повреждений материала под воздействием переменных напряжений и коррозионно-активных сред, приводящий к изменению свойств, образованию коррозионно-усталостных трещин, их развитию и разрушению изделия. Этому виду разрушения в определенных условиях могут быть подвержены все конструкционные материалы на основе железа, алюминия, титана, меди и других металлов. Опасность коррозионно-усталостного разрушения заключается в том, что оно протекает практически в любых коррозионных средах, включая такие относительно слабые среды, как влажный воздух и газы, спирты, влажные машинные масла, не говоря уже о водных растворах солей и кислот, в которых происходит резкое, иногда катастрофическое снижение предела выносливости металлов. Поэтому коррозионная усталость металлов и сплавов наблюдается во всех отраслях техники, но наиболее она распространена в химической, энергетической, нефтегазодобывающей, горнорудной промышленности, в транспортной технике. Коррозионно-усталостному разрушению подвергаются стальные канаты, элементы бурильной колонны, лопатки компрессоров и турбин, трубопроводы, гребные винты и валы, корпуса кораблей, обшивки самолетов, детали насосов, рессоры, пружины, крепежные элементы, металлические инженерные сооружения и пр. Потеря гребного винта современным крупнотоннажным судном в открытом океане приносит убытки, исчисляемые миллионами рублей. [c.11]

    Большой коэффициент термического расширения жидкостей может быть отнесен к уменьшению (по сравнению с твердым телом) энергии образования вакансий и связанным с этим возрастанием их числа с ростом температуры. Скачкообразное возрастание концентрации вакансий при температуре плавления в некоторых отношениях аналогично процессу разупорядочивания. Действительно, оба процесса являются лавинными. Энергия образования вакансий зависит от числа уже имеюш,ихся вакансий и убывает с ростом их концентрации. По аналогии с процессами скачкообразных изменений свойств (конденсации, расслоения растворов) можно полагать, что при некоторой температуре осуществляется скачок концентрации вакансий. [c.287]

    Как отмечалось, совершенные растворы характеризуются следующими свойствами образование раствора не сопровождается тепловым эффектом АН = 0), а изменение энтропии определяется уравнением (V.28). [c.107]

    Если система однородна, т. е. в пределах ее не происходит каких-либо скачкообразных изменений свойств, и в то же время состоит из нескольких различных типов частиц, то она называется раствором. В широком смысле этого слова растворы могут иметь любое агрегатное состояние — газовое, жидкое или твердое. Газы могут смешиваться при не слишком высоких давлениях в любых соотношениях и независимо от их химической природы. Смешение происходит в результате свойственной всем макроскопическим системам тенденции к переходу в более хаотичное состояние. Этот вопрос подробнее рассматривается в следующей главе. Здесь отметим лишь, что так как межмолекулярные взаимодействия в газе невелики, этой тенденции ничто не противодействует, что и приводит к неограниченной смешиваемости газов. Существуют растворы и в твердом состоянии, например многие сплавы металлов, однако возможности их образования ограничены. Как нетрудно понять из предыдущего параграфа, твердый раствор может образоваться лишь, если два сорта молекул атомов или ионов могут заменять друг друга в элементарной ячейке кристалла. В дальнейшем в этом курсе речь будет идти только о жидких [c.120]

    Увеличение энтропии также зависит от индивидуальных особенностей молекулярного строения компонентов и раствора. Наиболее простыми свойствами во всем диапазоне концентраций обладают растворы веществ, молекулы которых близки по своим молекулярно-физическим свойствам. В подобных растворах молекулы каждого компонента находятся в условиях, мало отличающихся от условий, в которых они находились в чистом компоненте. Поэтому их свойства не претерпевают сколько-нибудь значительных изменений. При образовании раствора из таких веществ, тепловой эффект и изменение объема отсутствуют, а изменение энтропии выражается так же, как и при смешении идеальных газов. [c.200]

    Как отмечалось, совершенные растворы характеризуются ми свойствами образование раствора не сопровождается теплов том (АЯ = 0), а изменение энтропии определяется уравнений Реальные растворы, вообще говоря, не имеют обоих этих с рис. -7 и -8 представлены зависимости давления пара от о [c.101]

    Не только интегральные экстенсивные свойства растворов являются однородными функциями масс и удовлетворяют условию (V, 20). Изменения этих величин при образовании раствора из чистых компонентов (при постоянных р и Т) также являются однородными функциями масс компонентов. [c.175]


    Растворы, близкие по свойствам к идеальным растворам, существуют в действительности. Они образуются из веществ, близких по своей природе смеси изотопов, смеси изомеров, смеси соседних гомологов в рядах органических соединений, смеси органических веществ с разными замещающими функциональными группами и т. п. Получим простое соотношение между химическим потенциалом компонента идеального раствора и его составом. Для изменения химического потенциала компонента при образовании раствора в соответствии с уравнением (VI, 6) можно написать  [c.211]

    Многие силикаты склонны к образованию твердых растворов, или к изоморфизму. Это обусловливает большое разнообразие составов силикатов. Физические свойства твердых растворов меняются постепенно с изменением концентрации растворенного вещества, НО в значительной степени отличаются от свойств чистых кристаллов даже тогда, когда процент растворенной в кристалле примеси очень мал. Объясняется это тем, что атом построенного вещества, попадая в решетку на место атома основного вещества, искажает ее в довольно большом объеме. В общем случае твердые [c.169]

    Взаимодействия эти проявляются во многих свойствах растворов. Уже само образование растворов в системах, в которых происходит сколько-нибудь интенсивное взаимодействие, сопровождается обычно выделением или поглощением теплоты и изменением объема. [c.307]

    В последние десятилетия в связи со все возрастающим применением высоких давлений были изучены многие свойства сжатых газов. При этом оказалось, что в таких условиях газы ведут себя подобно жидкостям смешение газов сопровождается изменением температуры, газы растворяют твердые, жидкие и газообразные вещества. Важно и то, что протекание многих природных процессов, например образование ряда горных пород, связано с явлениями, в которых газ (в частности, сжатый водяной пар) служит растворителем. Оказалось также, что при высоких давлениях вещества могут переходить в твердое состояние без промежуточного перехода в жидкое состояние, как, например, диоксид углерода. [c.222]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    Из определения следует, что функции смешения учитывают изменения термодинамических функций раствора при образовании его из чистых компонентов. С помош ью функции смешения можно описать термодинамические свойства раствора в широкой области концентраций. [c.304]

    Если чистые вещества растворимы друг в друге, то образование из них раствора происходит самопроизвольно и, следовательно, сопровождается уменьшением энергии Гиббса. Обычно при образовании растворов выделяется или поглощается тепло и изменяется объем. При переходе вещества в раствор его свойства изменяются, например способность вступать в химические реакции или испаряться. Эти изменения объясняются тем, что между компонентами раствора существует взаимодействие. Например, растворение серной кислоты в воде сопровождается выделением большого количества тепла. Здесь взаимодействие имеет отчетливо выраженный химический характер. В сжиженном воздухе — растворе азота, кислорода и инертных газов — взаимодействие между молекулами имеет физическую природу и гораздо слабее. [c.61]

    Скорость реакции и = /г [КХ] [ "]. Бимолекулярный закон может нарушаться в некоторых случаях, например, при образовании ионных пар в растворе, при изменении свойств растворителя с изменением концентраций реагентов и т. д. [c.123]

    Свойства растворов. В результате образования раствора изменениям подвергаются свойства не только растворяемого вещества, но и самого растворителя. Применительно к разбавленным растворам эти изменения могут быть подразделены на два типа зависящие [c.164]

    Кроме описанных явлений, в растворах сильных электролитов при повышенных концентрациях может происходить ассоциация ионов. Так, в водных растворах, например, установлено образование ионов ВаС1 Ag l2, Ь1С12 и др. При разбавлении эти частицы диссоциируют. Поэтому с повышением концентрации сильных электролитов даже при полной их диссоциации происходят изменения свойств раствора, аналогичные тому, как если бы при этом уменьшалась степень диссоциации электролита. Ясно, что эти изменения ш связаны с изменением истинной степени диссоциации, как это имеет место у слабых электролитов, а обусловливаются проявлением кажущейся степени диссоциации. Последняя, в свою очередь, не отражается концентрацией раствора, чем и обусловливается неприменимость закона действующих масс при подстановке в него истинных концентраций растворов электролитов. [c.180]

    Под структурой тел обычно поннмают пространственное взаимное расположение составных частей тела атомов, молекул, мелких частиц. Структу )а разбавленных агрегативно устойчивых дисперсных систем по ряду свойств очень похожа на структуру истинных растворов. Основное отличие состоит в том, что в дисперсных (гетерогенных) системах частицы дисперсной фазы и молекулы дисперсионной среды сильно различаются по размерам. Увеличение концеитрацин дисперсной фазы приводит к взаимодействию ее частиц подобному ассоциации молекул и ионов в истинных растворах. Изменение свойств дисперсных систем с ростом концентрации происходит постепенно до тех пор, пока не наступит коагуляция частиц. В коллоидной химии понятия структуры и етруктурообразования принято связывать именно с коагу-ля[и1ей, в процессе которой происходит образование пространственной сетки из частиц дпсперсной фазы с резким увеличением прочности системы [c.355]

    Отличительной особенностью их, как было отмечено ранее, является межмолекулярное взаимодействие частиц растворенного вещества и молекул растворителя. В связи с этим для таких растворов резкое отличие в поведении частиц растворенного вещества и растворителя отсутствует. Образование растворов неэлектролитов, как правило, не сопровождается существенными химическими изменениями. Поэтому изучение их свойств Послужило основой для создания физической теории растворов, в которой главную роль играла не природа растворенных частиц, а их количество. [c.213]

    Изменение свойств твердых растворов, указывающее на глубокое качественное превращение при образовании интерметап-личеоких фаз постоянного и переменного состава, единство строения диаграмм солеобразных, органических и металлических веществ — все это заставило Курнакова расширить класс химически индивидуальных веществ. Кроме элементов — простых веществ и определенных химических соединений, к химическим индивидам им были отнесены также такие однородные вещества переменного состава, как твердые растворы, а также многочисленные гидрат-ные формы, в которых при непрерывно меняющемся содержании воды сохраняется однородность и прозрачность кристалла. [c.193]

    В настоящее время общепринятым является мнение,, что изменение свойств твердого раствора на стадии предвыделения обусловлено неоднородностями в распределении растворенных атомов однако наличие этих неоднородностей не приводит к образованию двух определенных фаз. Избыток растворенных атомов имеет тенденцию к образованию групп, или зон, включенных в матрицу. Эти зоны всегда имеют субмикроскопические размеры, а их структура представляет собой более или менее деформированную структуру матрицы. В общем случае мы доллсны определить зону как малую область нарушения правильной кристаллической структуры матрицы, возникающую вследствие изменения концентрации и, возможно, вследствие смещения атомов относительно узлов средней решетки. [c.53]

    К таким определениям относится критическая концентрация мицеллообразова-ния. Несмотря на то что в нефтяных системах мицелла — понятие условное, и даже в некоторой степени неприемлемое, именно этот термин употребляется для описания изменения свойств нефтяных систем при изменении концентрации дисперсной фазы. Критической концентрацией мицеллообразования в классическом определении считается концентрация поверхностно-активного вещества в растворе, при которой наблюдается резкий рост образования мицелл, фиксируемый по изменению свойств раствора. В нефтяных системах под критической концентрацией мицеллообразования, понимают значение концентрации дисперсной фазы, или некоторой добавки в систему, выше которой в системе наблюдается лавинообразный рост числа структурных образований, который фиксируется по изменению физико-химических свойств системы. [c.27]

    Если в результате смешивания различных веществ получается новая однородная система — раствор, то его свойства отличаются от свойств каждого из компонентов в отдельности. Это изменение свойств связано, с одной стороны, с характером взаимодействия между молекулами компонентов и вновь образованными продуктами и, с другой стороны, с уменьшением концентрации свободных молекул каждого из веществ при распределении в нем другого вещества. Влияние всех этих факторов усиливается с ростом концентрации, а их количественный учет представляет очень трудную задачу. Поэтому заслуживают внимания крайне разбавленные растворы, для которых АНхО и ЛКлгО. В таком растворе частицы растворенного вещества находятся на большом расстоянии друг от друга и их взаимное влияние можно исключить, а растворитель практически не меняет своих свойств растворы приближаются к идеальным и изучение их упрощается становятся и более простыми уравнения, описывающие свойства таких растворов. [c.150]

    В растворах же состав может меняться непрерывно без существенного изменения химических свойств. Так, количество H l в растворе соляной кислоты может доходить до 37%, причем все растворы соляной кислоты будут обладать химическими свойствами, характерными для данной кислоты (взаимодействие со и елочами, с металлами и пр.), при этом однородность растворов кислоты не изменится. Это свойство понятно из приведенного здесь в виде обратимой реакщ и механизма образования раствора. Уравнение обратимой реакции показывает, что в растворе все время находятся в равновесии сольваты разного состава, поэтому изменение количества растворителя в растворе приведет лишь к изменению соотношения между этими сольватами, но не нарушит однородности и не изменит в некоторых пределах химических свойств раствора. [c.29]

    Наиболее удачно в настоящее время объясняет электрокаталитические эффекты предположение о полифункциональных свойствах катализаторов, промотированных адатомами. Модификация поверхности приводит к изменению ее адсорбционных характеристик по отношению как к органическим частицам, так и к частицам, образующимся в результате разряда ионов раствора или молекул воды (Н, ОН, О и др.). Адатомы могут явиться центрами, на которых появляются активные формы кислорода (например, частицы ОНадс), участвующие в медленной стадии процессов электроокнсления. В присутствии адатомов может затрудняться получение прочно хемосорбированных частиц, ингибирующих токоопределяющую реакцию, вследствие того, что эти частицы тре- буют для своего образования нескольких адсорбционных центров. Кроме того, модификация поверхности приводит и к изменению свойств поверхностных атомов самого катализатора из-за сильной связи с адатомами (лиганд-эффект). [c.300]

    Если жидкости.А и В близки по химическим свойствам (например, смеси изомеров или гомологов), то силы взаимодействия между однородными частицами (А—А, В—В) того же порядка, что и между разнородными (А—В). В этом случае образование раствора происходит без изменения объема и не сопровождается заметным тепловым эффектом, а изменение энтропии системы можно вычислить так же, как при смешении идеальных газов А5 == = —/ ( 11п iILi + 1п Хг), где Xi и Хг —молярные доли компонентов раствора. [c.88]

    Химические явления в процессе растворения впервые были отмечены Д. И. Менделеевым. Химическое взаимодействие молекул растворителя с частицами растворенного вещества называется сольватацией, а получающиеся при этом соединения —сольватами. Частный случай взаимодействия частиц растворенного вещества с растворителем — водой был назван гидратацией, а продукты взаимодействия (например, H2S04 H20) — гидратами. Гидратная теория растворов объяснила целый ряд явлений, наблюдавшихся при растворении и противоречащих физической теории растворов. Считая растворение дроблением вещества, сопровождающимся увеличением объема последнего, физическая теория могла лишь объяснить поглощение тепла при растворении.точки зрения гидратной теории закономерно и выделение теплоты, так как образование гидратов — обычно экзотермический процесс. Получило объяснение и скачкообразное изменение некоторых свойств растворов (например, плотности р или ее производной по концентрации dp/d ) при непрерывном изменении содержания растворенного вещества. Скачкообразное изменение свойств отвечает изменению состава продукта взаимодействия растворителя с растворенным веществом — гидрата-при увеличении (или уменьшении) содержания растворенного вещества в растворе. [c.146]

    Идеальные растворы отличаются тем, что при любых концентрациях и температурах для всех компонентов раствора справедлив закон Рауля p =p Ni, pi = p Ni, Рз = р1 з и т. д. Такие растворы (эбразуют вещества, близкие по своей природе, напримгр бензол и толуол, растворы жирных углеводородов, растворы изотопов (например, раствор тяжелой воды ПгО в обычной Н2О). Идеальные растворы вследствие близости свойств составляющих их веществ образуютс без изменения объема и без теплового эффекта, т. е. АН = 0. Как и при любом физико-химическом процессе, изменение энергии Гиббса при образовании раствора определяется уравнением G=AH—TAS. Так как в случае идеального раствора АН = 0, то AG =—TAS. Это означает, что образование совершенного раствора определяется лишь увеличением энтропии при смешении веществ. [c.75]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, V растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекуляр-ное взаимодействие (электростатическое, ван-дер-ваальсовы силы), и ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная [c.141]

    Если в результате смешивания различных веществ полу чается новая однородная система — раствор, то его свой ства отличаются от свойств каждого из компонентов в от дельности. Это изменение свойств связано, с одной стороны с характером взаимодействия между молекулами компонен тов и вновь образованными продуктами и, с другой стороны с уменьшением концентрации свободных молекул каждого из веществ при распределении в нем другого вещества Влияние всех этих факторов усиливается с ростом концент рации, а их количественный учет п )едставляет очень труд ную задачу. Поэтому заслуживают внимания крайне разбав ленные растворы, для образования которых и ДУ 0 [c.158]


Смотреть страницы где упоминается термин Изменение свойств при образовании растворов: [c.20]    [c.231]    [c.312]    [c.341]    [c.363]    [c.39]    [c.166]    [c.285]    [c.341]    [c.363]    [c.123]   
Смотреть главы в:

Введение в теорию химических процессов -> Изменение свойств при образовании растворов




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Растворов свойства

Растворы Образование растворов

Растворы образование



© 2024 chem21.info Реклама на сайте