Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Длины волн различных видов излучения

Таблица 10.12. Длины волн различных видов излучения Таблица 10.12. <a href="/info/1176801">Длины волн различных видов</a> излучения

Рис. 159. Длины волн и энергии различных видов электромагнитного излучения Рис. 159. <a href="/info/2957">Длины волн</a> и <a href="/info/918534">энергии различных видов</a> электромагнитного излучения
    Длины волн и энергия различных видов излучения [c.518]

    Ниже приведены длины волн различных видов излучения и спектр солнца. [c.59]

    Длина волн различных видов излучения (шкала электромагнитных волн) [c.59]

    На рисунке 11 изображен электромагнитный спектр в виде своеобразной масштабной линейки. На этой линейке отмечены интервалы длин волн различных электромагнитных излучений. Цифры в кружках означают октавы (октава — интервал, при котором длина волны удваивается). Масштаб линейки выражен в октавах. [c.74]

    Диапазоны встречающихся в приложениях размеров дисперсных частиц, способы их измерения показаны на рис. 0.1 в сравнении с характерными длинами волн различных видов электромагнитного излучения, размерами атома, кристалла и характерной длиной свободного пробега в газе ). [c.15]

    Кроме теплового излучения, тела могут испускать лучистую энергию других видов. Бомбардировка вещества электронами дает излучение, которое мы называем рентгеновскими лучами. Выдерживание вещества под облучением одного вида часто приводит к тому, что оно дает другое или вторичное излучение например, некоторые минералы флуоресцируют в ультрафиолетовом свете. В действительности существует целый спектр электромагнитного излучения, различные части которого получили название, отражающее способ их получения или некоторое характерное свойство. Все виды электромагнитного излучения имеют одинаковую скорость распространения, но отличаются длиной волны и происхождением, При поглощении всех видов излучения выделяется тепло. Однако, только одно электромагнитное излучение, возникающее благодаря нагретому состоянию излучающего тела, мы называем тепловым излучением. Часть этого теплового излучения мы называем также видимым светом, но большая часть его, однако, лежит за пределами спектра видимого света и обычно включается в понятие об инфракрасном излучении, В табл. 28, 1 приводятся примерные пределы длин волн некоторых видов излучения. [c.384]

    Ниже приведены длины волн (в м) различных видов излучения  [c.29]


    Рассмотренное деление спектроскопии по диапазонам длин волн и частот излучения определяется различием экспериментальных методов исследовання отдельных областей спектра. В табл. 6.2 приведены названия спектров, соответствующих различным типам излучения. Все эти спектры можно классифицировать в рамках четырех видов спектроскопии ядерной, атомной, молекулярной и спектроскопии конденсированных систем. [c.214]

    Из уравнения Релея (УП1.1) и уравнения (УП1.4) можно сделать следуюш,ие выводы. Рассеяние света тем значительнее, чем крупнее частицы (следует, однако, иметь в виду, что теория применима для случая, когда размер частиц не превышает длины волны). На интенсивность рассеяния света огромное влияние оказывает его длина волны. (Из УП1.1) и (УИ1.4) следует, что преимущественно рассеивается коротковолновое излучение (обращаем внимание X в знаменателе). Поэтому при освещении белым светом, который можно рассматривать как смесь лучей различной длины волны, рассеянный свет богаче коротковолновым излучением, а прошедший — длинноволновым. Интенсивность рассеянного света находится в прямой зависимости от разности показателей преломления дисперсной фазы и среды. При равенстве показателей преломления система практически не рассеивает свет. Интересно, что если при этом среда и дисперсная фаза отличаются показателями оптической дисперсии, то системы окрашены в яркие цвета (эффект Христиансена). [c.159]

    После фотоэлектронного поглощения атом находится в высоковозбужденном состоянии. Вакансия, созданная фотоэлектронным поглощением, будет заполнена электроном с более высоколежащей оболочки. Разность энергии между этими двумя уровнями, например, вакансией в К-оболочке и вакансией в Ьз-оболочке, испускается в виде рентгеновского фотона. Это рентгеновское излучение называют характеристическим , потому что его энергия (или длина волны) различны для каждого элемента, так как всякий элемент имеет свой собственный уровень энергии. [c.64]

    В зависимости от толщины металлич. или полупроводникового слоя, нанесенного на стеклянную пластину, С. м. может задерживать 10—90% падающего на него видимого света. Кроме того, нек-рые металлы могут задерживать видимый свет определенной длины волны напр, золото является фильтром для желтого света. Металлизированные С. м. могут служить защитными экранами от различных видов излучений, напр, радиоволн, УФ-света и инфракрасного излучения. Поверхность С. м. с нанесенным на нее полупроводниковым слоем не отражает видимый свет и не образует световых [c.244]

    О. Определение спектральных, полосных и интегральных характеристик. Введение спектральных и интегральных характеристик не представляет никаких проблем для непрерывного спектра излучения они подобны обсуждавшимся ранее характеристикам поверхностей. Например, облако частиц различного размера дает непрерывное излучение. Под словом непрерывное понимается тот факт, что величины Кд и а следовательно, и / меняются медленно и непрерывно с изменением длины волны или волнового числа. Например, спектральный массовый коэффициент поглощения сажи можно с достаточной точностью представить в виде [c.487]

    По формуле (1.4) можно подсчитать энергию фотонов для различного вида излучений. Так, для инфракрасных лучей с длиной волны Я=10 мк энергия дж, для видимого излучения [c.12]

    Длины волн и энергия различных видов излучения..........528 [c.9]

    Различные виды излучения имеют разные длины волн  [c.134]

    Для анализа используют спектрограф ИСП-30 (рис. 1.7). Полихроматическое излучение плазмы, проходя через шель 1, попадает на зеркальный коллиматорный объектив 2, который поворачивает лучи и обеспечивает равномерное освещение призмы 3. Разложенный по длинам волн свет собирается камерным объективом 4 в его фокальной плоскости, отражается зеркалом 5 и попадает на фотографическую пластинку 6. Одинаковое почернение спектральной линии по высоте является необходимым условием количественных измерений и получается только при равномерном освещении щели спектрографа источником излучения. Наиболее совершенна в этом случае трехлинзовая осветительная система (рис. 1.8). Линза 2 дает несколько увеличенное изображение источника света 1 на проме/куточной диафрагме 3, которая позволяет вырезать различные зоны свечения источника эмиссии, а также экранировать раскаленные концы электродов и менять интенсивность светового потока. Конденсор 4, расположенный за диафрагмой 3, проецирует изображение линзы 2 на щель спектрографа в виде равномерно освещенного круга. Линза 5 дает увеличенное изображение выреза диафрагмы 3 на объективе 7 коллиматора. Таким образом, конденсоры 2, 4 и 5 играют роль вторичных полихроматических источников света. [c.26]

    Определение индексов производится различными методами и приемами, в частности аналитическими и графическими способами. Индицирование основывается на использовании так называемых квадратичных форм, представляющих собой для каждой сингонии аналитическую зависимость, связывающую значения индексов интерференции (кк1) с параметрами решетки а, Ь, с), длиной волны рентгеновского излучения (к) и синусом угла отражения (0). Например, для кубической сингонии квадратичная форма имеет вид [c.93]


    Цвет — это результат воздействия на глаз электромагнитного излучения в диапазоне длин волн от 3,8 10 до 7,6-102 нрд Излучения с разной длиной волны воспринимаются глазом в виде различных цветов. Цвета и соответствующие длины волн (в нм) спектра видимого солнечного света  [c.30]

    В соответствии с изложенным выше различают три вида молекулярных спектров — спектры электронных переходов, колебательные (вибрационные) спектры и вращательные (ротационные) спектры. На рис. 159 (приложение 2) указаны энергии и длины волн излучения, соответствующие различным изменениям в состоянии молекул. [c.130]

    Простейший способ проанализировать спектральный состав излучения состоит в том, что свет фокусируют на узкую прямоугольную щель, затем пропускают через призму и фотографируют на фотопластинку. В результате разного преломления света разной длины волны на пластинке получается серия изображений щели в виде серии линий, отвечающих различным длинам волн, представленным в испускаемом излучении. Поэтому такие спектры называются линейчатыми спектрами. [c.151]

    И рост В замедляется и затем В начинает уменьшаться (соляризация). Этот эффект наблюдается либо в месте попадания первичного пучка рентгеновских лучей, либо в случае сильно переэкспонированных пленок. Зависимость I) от П показана на рис. 5, она различается для различных сортов пленки, но общий вид зависимости сохраняется. Зависимость от длины волны регистрируемого излучения определяется степенью поглощения и на ней выделяются края полос поглощения брома и серебра (рис. 6). При фотографической регист- [c.18]

    Видимая область занимает узкий участок спектра примерно от 4000 до 7500 A. Электромагнитное излучение, соответствующее этой области, воспринимается глазом человека как видимый свет различных цветов в зависимости от длины волны. Видимое излучение занимает только маленький участок во всем электромагнитном спектре, но способность глаза непосредственно видеть только эти волны делает его главным для человека. Для спектрального анализа эта область также представляет значительный интерес, хотя и меньший, чем соседние ультрафиолетовая и ближняя инфракрасная области. [c.26]

    Когда было установлено, что существуют и другие виды электромагнитного излучения, распространяющиеся со скоростью света, стало-ясно, что свет не уникальное явление природы, а лишь видимое проявление гораздо более общего эффекта, к которому относятся также инфракрасное излучение (открытое Гершелем в 1800г.), электрическое излучение (открытое Герцем в 1887 г.) и рентгеновское излучение (открытое Рентгеном в 1896 г.). Все эти виды излучения относятся к той или иной части электромагнитного спектра (рис. 2.14). Электромагнитный спектр непрерывен и простирается от области чрезвычайно коротких длин волн и высоких частот, соответствующей космическим лучам, до области чрезвычайно длинных и низкочастотных электрических волн. Все виды излучения отличаются только длиной волны X, т.е. расстоянием между двумя последовательными максимумами волнового процесса. Любое электромагнитное излучение распространяется с одинаковой скоростью, которая в вакууме составляет 3,00-10 м/с (обозначается с), и проявляет волновые свойства. В спектре электромагнитного излучения принято выделять разлитаые области, однако между ними не существует четких границ правда, видимая часть спектра (380—760 нм) имеет довольно определенные границы, но это обусловлено ограниченной способностью человеческого глаза к восприятию излучения. Для обнаружения излучения в различных областях электромагнитного спектра созданы специальные приборы, называемые спектроскопами, спектрометрами или спектрографами в зависимости от того, каким образом в них производится регистрация излучения. [c.33]

    Действие излучений. Микроорганизмы в процессе жизнедеятельности могут быть подвержены воздействию различных видов излучений. Влияние излучений на микроорганизмы зависит от длины волны. Инфракрасное излучение оказывает тепловое воздействие на микроорганизмы. Важное экологическое значение имеет свет для фотосинтезирующих микроорганизмов, которые не могут развиваться в его отсутствие. Излучения определенной длины волны видимой части спектра необходимы для жизнедеятельности пигментообразующих бактерий. Изменение интенсивности освещенности сопровождается перемещением микроорганизмов, находящихся в воде во взвешенном состоянии (фотодинамический эффект). Све толюбивые (фотопозитивные) виды перемещаются в верхние слои. Фотонегативные формы характерны для донных отложений. Ультрафиолетовое излучение с длиной волны от 200 до 300 нм обладает наиболее сильно выраженным бактерицидным действием. На прямом солнечном свету отмирание микробов происходит в тонком слое воды через 20—30 мин. [c.221]

    Невыполнение каждого из этих условий приводит к получению средней (или кажущейся) величины ё Наиболее трудно выполняется третье из указанных условий, так как чаще всего известно и используется при расчетах лищь общее содержание вещества во всех его видах и неизвестно истинное число ноглощаюш,их частиц данного вида, которое изменяется, если смещается химическое равновесие. Под влиянием изменения ионной силы (ц) раствора изменяется энергетическое состояние поглощающих частиц н, следовательно, их способность к поглощению излучений различных длин волн. [c.464]

    Длины волн, соответствующие различным видам электромагнитного излучения, показаны на рис. 15 " там же приведены энергии квантоь (в расчете на I моль), отвечающие различным длинам волн. [c.289]

    Атомно-ионизационный метод анализа был бы невозможен без использования лазеров. Поскольку наиболее селективным методом ио1П1зации атомов является нх предварительный перевод в одно из возбужденных состояний и поскольку в видимой и ультрафиолетовой областях спектра лежат спектральные линии атомов многих элементов, то имеиио лазеры, генерирующие излучение в этих областях, являются неотъемлемой частью любого прибора для атомно-ионизационного метода. В основном это лазеры, работающие на органических красителях как активных средах. Непрерывная перестройка длины волны излучения, достаточная для достижения (во многих случаях) режима насыщения, сделала лазеры на органических красителях незаменимым средством селективного возбуждения атомов многих элементов. Существует много типов таких лазеров. Наиболее часто используемые лазеры имеют следующие xapaivTepH THKH область непрерывной перестройки от —300 до 800 нм, выходная мощность 1—20 кВт в линии генерации, ширина которой варьируется от 1 до 0,01 нм при длительности 7— 12 НС в случае лазерной накачки и 1—50 мс при ламповой накачке лазера на красителях. Следующей неотъемлемой частью установки является атомизатор, в качестве которого наиболее широко, как это уже упоминалось, используется пламя, а также электротермические атомизаторы с испарением находящихся в них образцов в вакууме. Находят применение и различного вида электротермические атомизаторы, работающие при атмосферном давлении. [c.185]


Смотреть страницы где упоминается термин Длины волн различных видов излучения: [c.528]    [c.471]    [c.528]    [c.151]    [c.242]    [c.243]    [c.172]    [c.18]    [c.308]    [c.17]   
Смотреть главы в:

Справочник молодого аппаратчика химика -> Длины волн различных видов излучения




ПОИСК





Смотрите так же термины и статьи:

Длина волны

Длина волны излучения



© 2025 chem21.info Реклама на сайте