Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бор, атомный и ионный радиусы ионизационные потенциалы

    Некоторые свойства, такие, как ионизационный потенциал, сродство к электрону, электроотрицательность, валентность (степень окисления), а также атомный и ионный радиусы, позволяют предсказать и объяснить химические свойства элементов, также закономерно изменяющиеся с ростом порядкового номера и периодически повторяющиеся у элементов одной группы. [c.107]


    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в гл. I, 5. Для иллюстрации внутренней периодичности в табл. 5 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 3) с уменьшением атомных радиусов в результате лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В, У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/ -оболочка. У гадолиния же при той же устойчивой 4/,-оболочке появляется один электрон на Sii-оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5 /°-оболочку неустойчивой. Для элементов, следующих за Gd, вновь наблюдается монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Благодаря стабильности указанной 4/ -оболочки европий часто функционирует в степени окисления 4-2 за счет бз -электронов, а один из семи неспаренных электронов на 4/ -оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/ -обо-лочка. В случае самария и тулия, находящихся левее указанных [c.172]

    В химии редкоземельных элементов наиболее ярко проявляется внутренняя периодичность, особенно для производных в характеристической степени окисления. Объяснение этому факту было дано в 5 гл. X. Для иллюстрации внутренней периодичности в табл. 25 приведены цвет гидратированных ионов Э , стандартные энергии Гиббса образования трифторидов и проявляемые степени окисления. Наблюдается удивительная аналогия в свойствах элементов, находящихся друг под другом. В каждой семерке, составляющей внутренний период, ионизационные потенциалы третьего порядка монотонно растут (см. табл. 24) с уменьшением атомных радиусов вследствие лантаноидной контракции. Но начало нового внутреннего периода (переход от Ей к Gd) сопровождается уменьшением третьего ионизационного потенциала на 4 В. У европия впервые в первой семерке достигается устойчивая наполовину заполненная 4/-оболочка. У гадолиния же при той же устойчивой 4/-оболочке появляется один электрон на 5 -оболочке, который намного легче удаляется, потому что этот электрон делает стабильную 5( 0-оболочку неустойчивой. Для элементов, следующих за Сс1, вновь наблюдается Монотонное возрастание третьего ионизационного потенциала вследствие лантаноидного сжатия. Вследствие стабильности 4/-оболочки европий часто функционирует в степени окисления +2 за счет бб -электронов, а один из семи неспаренных электронов на 4/оболочке участвует в образовании связей в более жестких условиях. Для его аналога иттербия картина схожая, только в качестве устойчивой выступает уже полностью заселенная 4/4-оболочка. В случае самария и тулия, находящихся левее указанных выше Ей и УЬ, 4/- и 4/З-оболочки близки к достижению стабильного состояния, а потому в основном проявляют характеристические степени окисления. Но эти же элементы в более мягких условиях могут быть в степени окисления +2 за счет бя -электронов при квазистабильных 4/- и 4/3-оболочках. Для элементов начала внутренних периодов — Ьа и Сс1 — наблюдается только степень окисления +3 вследствие устойчивости 4/>- и 4/-оболочек, полностью вакантной или наполовину заполненной. А электронами, участвующими в химическом взаимодействии, у них являются 5<Лб 2-электроны, т.е. по три электрона. Следует отметить, что заполненные бв-орбитали также должны быть стабильны, но для лантана и лантаноидов электроны на них являются внешними, а потому слабее связанными с ядром и вследствие этого наиболее подвижными. У [c.351]


    Величины ионизационных потенциалов зависят от радиуса атома, числа электронов во внешнем слое и числа электронов в предпоследнем слое. Для элементов, у которых предпоследний слой является октетом и которые поэтому в результате ионизации образуют ионы со структурой атома инертного газа (например, N3+, С1+ и т. д.), полный, т. е. отвечающий полной ионизации, ионизационный потенциал может быть подсчитан с помощью закона Кулона. Ядро атома вместе с внутренними электронными слоями — атомный остаток — действует на внешние электроны приблизительно так, как если бы в ядре был сосредоточен алгебраически суммарный заряд ядра и внутренних слоев. [c.88]

    Средняя атомная масса Распределение электронов по квантовым слоям Кажущийся радиус нейтрального атома, А Ионизационный потенциал, в Кажущийся радиус положительных ионов, А Наличие в земной коре, вес. % [c.383]

    Естественно, что были обсуждены не все свойства твердого тела, которые могут влиять на каталитическую активность. Многие из нерассмотренных свойств, однако, коррелируют с рассмотренными. Например, ионизационный потенциал связан с работой выхода электрона, ионные и атомные радиусы — с параметром решетки. Не обсуждался вопрос подбора катализаторов по энергиям связи реагирующих веществ с поверхностными атомами катализатора. Главное внимание обращалось на свойства твердых тел, которые можно измерить экспериментально независимо от катализа. При анализе тех или иных теоретических воззрений в области катализа внимание обращалось в первую очередь на выводы, которые позволяю связать уже на данном уровне развития теории каталитическую активность непосредственно с измеряемыми свойствами. Это, конечно, не означает, что из той или иной теории нельзя сделать выводы относительно связи между каталитической активностью и другими свойствами. [c.98]

    Все щелочные металлы легко отдают свой валентный электрон, причем легче всего отдает его цезий, обладающий наибольшим атомным радиусом и, следовательно, наименьшим ионизационным потенциалом. Исходя из этого следует ожидать у цезия наиболее отрицательный электродный потенциал и наименее отрицательный — у лития. В расплавленных солях электродные потенциалы щелочных металлов действительно так и изменяются. Для водных растворов эта зависимость нарушается. Аномально высокое значение электродного потенциала лития в водных растворах вызвано значительно более высокой энергией гидратации иона лития по сравнению с остальными ионами щелочных металлов. Это, в свою очередь, обусловлено тем, что негидратированный ион лития имеет минимальный радиус, обладает наибольшей поверхностной плотностью заряда. [c.5]

    К величинам, которые характеризуют периодичность строения атома в количественном отношении и поддаются непосредственному экспериментальному определению, несомненно, относятся ионизационный потенциал и сродство атома к электрону. Эти величины связаны с изменением состояния электронов, вступающих во взаимодействие, с энергетической точки зрения, и не связаны ни с какими условными разделениями свойств отдельных ионов или атомов поэтому, естественно, что, если данные величины, равно как и свойства веществ, представить как функции порядкового номера характерных атомов, то они оказываются весьма удобными при сравнении изменений свойств веществ. Однако в литературе имеется большое число работ, где связь с периодическим законом устанавливается и через другие величины, например через ионный и атомный радиусы, электроотрицательность [11], эффективные заряды ионов и атомов и другие параметры [12]. Использование указанных величин приводит примерно к таким же результатам, но требует большего числа допущений и предположений, и потому эти пути нам представляются менее эффективными. Поэтому в наших работах для сравнения используются данные по ионизационным потенциалам. [c.7]

    Литий и бериллий, открывающие 2-й период, были вероятно, исключены из биохимической эволюции из-за того, что их химические свойства не вполне подходили к требованиям тонко сбалансированных систем клетки. Литий занимает особое положение он имеет наименьший -атомный радиус и, следовательно, наиболь ший ионизационный потенциал среди щелочных металлов. При отрыве от атома лития валентного электрона обнажается весьма устойчивая двухэлектронная оболочка. Ион Ы+ мало поляризуется под действием ионов, но весьма сильно сам поляризует другие ионы и молекулы. Малым ионным радиусом и, следовательно, сильным электрическим полем объясняется тот факт, что литий не образует устойчивых соединений с комплексными анионами. И, напротив. его карбонаты, фосфаты и фториды, в отличие от аналогичных соединений натрия и калия, труднорастворимы. Ион лития, имеющий наименьший среди щелочных металлов радиус, в водных растворах так сильно гидратирован, что его размер в гидратированном состоянии намного превышает радиусы гидратированных ионов Ыа+ и К+. Это препятствует Ь1+ проникать сквозь мембраны клетки и играть роль, которую играют ионы N3+ и К+. Однако, регулируя активность некоторых ферментов, он может влиять на ионный Ыа+—К+ баланс клетки. В повышенных концентрациях соединения лития — яд для организма. [c.177]


    Характеристика элементов. При рассмотрении нижних элементов подгруппы обращает внимание рост ионизационного потенциала при практически неизменном атомном и ионном радиусе. Это означает уплотнение электронных оболочек атомов. Близость радиусов [c.355]

    Для элементов 1А группы характерны самые большие атомные и ионные радиусы и самые малые ионизационные потенциал л. Они имеют также самые высокие по абсолютной величине отрл-цательные электродные потенциалы, например —3,04 В (Ь ), -2,7 В (Ыа), -2,92 В (К). [c.487]

    Поляризуемость аниона находится в тесной зависимости от ионизационного потенциала катиона, от которого поэтому зависят также соотношение между ионной и атомной (ковалентной) составляющими химической связи в кристалле и энергия кристаллической решетки. У кристаллических соединений, которые имеют одинаковый анион, но разные катионы с близким радиусом и одинаковым зарядом, по мере увеличения ионизационного потенциала возрастает поляризуемость аниоиа, происходит переход от ионной связи к ковалентной и возрастает энергия кристаллической решетки. Поэтому указанная совокупность факторов может оказаться полезной при оценке относительной химической устойчивости минералов. Использование ионизационных потенциалов как исходных величии для характеристики химической устойчивости минералов весьма удобно, так как значения ионизационных потенциалов известны для большинства катионов. [c.14]

    Предпочтение, оказываемое азотом элементам с малыми атомными весами, по сравненито с высшими, более электроположительными представителями тех же подгрупп, объясняется следующим образом. Соединения азота с электроположительными элементами имеют ионную решетку, и азот в них содержится в виде трехзарядных ионов N. Теплота же образования кристаллов, построенных из ионов (как это было показано на примере, разобранном на стр. 116), зависит не только и не столько от ионизационного потенциала металлов и от электронного сродства неметаллов, сколько от энергии электростатического сцепления образовавшихся ионов металла и неметалла в кристаллическую решетку. Ввиду большого заряда тиа азота энергия кристаллической решетки нитридов особенно велдаа и должна поэтому играть решающее значение в энергетическом балансе синтеза нитридов. Кроме того по формуле Капустинского, энергия решетки тем больше, чем меньше радиусы связанных в кристаллическую решетку ионов в этом и заключается причина предпочтения, оказываемого азотом элементам с малыми атомными, весами, а вследствие этого — с малыми значениями ионного радиуса. [c.306]


Смотреть страницы где упоминается термин Бор, атомный и ионный радиусы ионизационные потенциалы: [c.107]    [c.107]    [c.103]    [c.107]    [c.103]    [c.51]   
Органические аналитические реагенты (1967) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Ионизационный потенциал

Ионные радиусы

Ионный потенциал

Радиусы ионов

рий радиус иона



© 2025 chem21.info Реклама на сайте