Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биохимический синтез лимонной кислоты

    Кофермент А играет большую роль в обмене жире и углеводов, в частности в переносе ацильных остатков (ацетильной группы) он входит в состав фермента цикла лимонной кислоты, фермента расщепления и синтеза жирных кислот он участвует также в ряде биохимических процессов у разнообразных живых организмов от микробов до человека. Все это объясняет значение и широкое распространение пантотеновой кислоты в природе. [c.77]


    БИОХИМИЧЕСКИЙ СИНТЕЗ ЛИМОННОЙ КИСЛОТЫ  [c.629]

    Конденсации по а-углеродному атому органических кислот протекают при участии ацетил-КоА, например в синтезе лимонной кислоты. Фаза включения уксусной кислоты в виде активного ацетила в важнейший биохимический цикл превращений трикарбоновых кислот (цикл Кребса, см. с 324) заключается в электрофильной атаке карбонилом щавелевоуксусной кислоты атома углерода метильной группы ацетил-КоА, имеющего повышенную электронную плотность. В результате реакции, протекающей под влиянием цитрат-синтазы, синтезируются лимонная кислота и кофермент А [2231  [c.90]

    В последние годы реакция Бутлерова привлекла интерес с точки зрения синтеза биохимических продуктов. Так, показано [257], что формоза, полученная конденсацией формальдегида в щелочной среде, является эффективным стимулятором биосинтеза протеолитических ферментов, а также лимонной кислоты. По данным патента [258], биохимическим окислением рассматриваемой смеси сахаров может быть получена L-глутаминовая кислота. [c.109]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]


    Цикл трикарбоновых кислот — один из наиболее известных биохимических процессов. Он является типичным для многих подобных последовательных клеточных реакций, в результате которых относительно большое число субстратов может превращаться путем циклических серий реакций, включающих очень небольшое число интермедиатов. В цикле трикарбоновых кислот (также называемом циклом Кребса или циклом лимонной кислоты) суммарная реакция — это окисление уксусной кислоты до диоксида углерода и воды. Этот процесс может либо служить источником энергии, либо давать промежуточные соединения, используемые в биологических синтезах. Уксусная кислота вступает в цикл в виде ацетилкофермента А СНзСОЗСоА, дальнейшие превращения показаны на схеме. Все стадии синтеза сравниваются с процессами, происходящими в обычной химии, многие важные биохимические аспекты опущены. [c.260]

    При полном сгорании глюкозы в калориметрической бомбе выделяется количество тепла (—ДН), равное 674 ккал1моль. Изменение энтропии (tAs) (см. том I) составляет 12 ккал, так что общее понижение свободной энергии (—ДО) равно 686 ккал. Из них в биохимическом окислении глюкозы можно регенерировать примерно 67% в форме, пригодной для использования для произведения механической работы- или эндэргонных химических синтезов. Этот энергетический выход значительно превышает коэффициент полезного действия наилучших тепловых двигателей, построенных до настоящего времени. Основной функцией лимонной кислоты, безусловно, является производство энергии кроме того, она служит исходным соединением для получения промежуточных продуктов, необходимых для синтеза аминокислот и жирных кислот. [c.257]

    В начале XX ст. в биохимии начали широко использоваться многие физические и химические методы исследования, благодаря которым были раскрыты основополагающие биохимические процессы жизнедеятельности организма. Так, в 1929 г. одновременно несколькими учеными (К. Ломаном, С. Фиске, Й. Суббароу) была выделена АТФ из скелетных мышц, а в 1941 г. Ф. Липманом обоснована концепция биоэнергетики, согласно которой цикл АТФ<->АДФ является главным и универсальным процессом в аккумуляции и переносе химической энергии в клетках организма. В 1932 г. В.А. Энгельгардт установил взаимосвязь процессов окисления питательных веществ с процессами фосфорилирования, т. е. с образованием АТФ. В 1937 г. американским ученым Г. Кребсом был раскрыт цикл лимонной кислоты, названный циклом Кребса. Данный цикл является основным метаболическим процессом окисления углеводов и других органических веществ. За это открытие Г. Кребс в 1953 г. был удостоен Нобелевской премии. Г. Кребсом изучен также цикл синтеза мочевины в печени (1933). [c.13]

    Известно много биохимических синтезов, при которых используется накопленная в аденозинтрифосфате энергия, например реакции синтеза эфиров глюкозы, образования сахарозы и гликогена из глюкозо-1-фосфата, синтез гиппуровой кислоты, глутатиоиа, глутамина, аргинина, пировиноградной кислоты, щавелевоуксусной, ацетоновой, масляной, лимонной кислот н многих других соединений, образующихся в процессе обмена веществ Эти синтезы осуществляются через ряд реакций. Процесс начинается с переноса макроэргических фосфатных связей [c.258]

    В настоящее время в промышленности биосинтезом получают в большом масштабе такие важные группы веществ, как органические растворители и полупродукты (например, 2-3-бутилен-гликоль), витамины В12 и Вг, глицерин, декстран, органические кислоты (молочную, лимонную, глюкоиовую, фумаровую, итаконовую), антибиотики, стероиды (гормоны), некоторые аминокислоты (например, глютаминовую) и др. Применение биосинтеза все расширяется. В будущем, несомненно, он заменит множество, вероятно большинство, процессов синтеза в нынешней химической технологии, которая в значительной степени должна быть переведена на биохимические пути. [c.335]

    Нередко одни и те же вещества являются метаболитами для одних организмов и оказываются конечными продуктами обмена для других. Так, в процессе гликолиза в тканях млекопитающих образуется молочная кислота, которая должна рассматриваться как метаболит, потому что она не покидает организм в неизменном виде, а подвергается дальнейшим превращениям в нем (часть окисляется до СОг и НгО, часть включается в синтез гликогена и т. д.). В то же время молочная кислота, образующаяся в процессе жизнедеятельности некоторых видов микроорганизмов. является конечным продуктом их обмена. У человека, человекообразных обезьян, у птиц и рептилий конечным продуктом обмена пуринов является мочевая кислота. У большинства млекопитающих мочевая кислота является метаболитом, так как под действием фермента уриказы она превращается в аллантоин и другие окисленные продукты. В качестве примеров метаболитов можно назвать ряд промежуточных продуктов, образующихся в процессе важнейших биохимических реакций. Основными метаболитами гликолиза являются глюкоза, глюкозо-6-фосфат, 3-фосфоглицериновая кислота, 2-фосфоглицериновая кислота, фосфопировиноградная кислота и др. Метаболиты цикла трикарбоновых кислот лимонная, цисаконитовая, а-кетоглутаровая, янтарная, щавелевоуксусная кислоты и т. д. Несмотря на разнообразие субстратов, участвующих в обмене веществ, в том числе [c.228]



Смотреть страницы где упоминается термин Биохимический синтез лимонной кислоты: [c.57]    [c.34]    [c.96]   
Смотреть главы в:

Собрание трудов по химии и биохимии -> Биохимический синтез лимонной кислоты




ПОИСК





Смотрите так же термины и статьи:

Лимонен

Лимонит

Лимонная кислота

Лимонная кислота в лимонах



© 2025 chem21.info Реклама на сайте