Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переносчики окислительно-восстановительные

    Окислительно-восстановительные электроды (редокс-электроды). Хингидронный электрод. Поскольку все потенциалопределяющие процессы протекают с участием электронов, каждый электрод может быть назван окислительно-восстановительным. Однако окислительно-восстановительными условились называть такие электроды, металл которых не принимает участия в окислительно-восстановительной реакции, а является только переносчиком электронов, процесс же окисления — восстановления протекает между ионами, находящимися в растворе. Схему электрода и уравнение потенциал-определяющего процесса записывают в виде [c.179]


    Важнейший процесс биологического окисления, а именно перенос электронов и протонов с окисляемого субстрата на кислород, осуществляемый в тканях при помощи строго определенного ряда промежуточных ферментов-переносчиков, также представляет собой цепь окислительно-восстановительных процессов. Каждое звено этой цепи соответствует той или иной редокс-системе, характеризующейся определенным редокс-потенциалом  [c.55]

    Окислительно-восстановительные потенциалы. На электродах гальванических элементов протекают реакции окисления и восстановления. Материал электродов при этом изменяется. Однако могут быть построены и такие гальванические элементы, электроды которых не претерпевают изменений, а являются лишь переносчиками электронов. Схема такого элемента рассмотрена ранее (см. рис. 65). [c.192]

    Если в реакционную массу вместе с олефинами вводить кислород, происходит окисление палладия, но реакция идет слишком медленно. Заслуга разработчиков процесса состояла главным образом в создании окислительно-восстановительной системы, в которой палладий быстро окисляется, т. е. непрерывно регенерируется в активной форме. Оказалось, что, если в раствор добавить соль двухвалентной меди, она окисляет палладий, переходя н одновалентную медь, легко окисляемую кислородом. Иными словами, соли меди служат переносчиками кислорода  [c.447]

    Глютатион обнаружен во всех клетках. Очень много его в зародыше пшеничного зерна и в дрожжах. Он является переносчиком водорода в окислительно-восстановительных реакциях. 5Н-глютатион повышает активность некоторых ферментов и, в частности, протеолитических, при этом часто снижает качество муки и выпекаемого из нее хлеба. Окислительно-восстановительную реакцию глютатиона можно представить следующим образом  [c.63]

    Окислительно-восстановительные потенциалы каждого переносчика увеличиваются по мере приближения к кислороду, так что электроны, отщепленные от субстратов соответствующими дегидрогеназами, переносятся к кислороду термодинамически самопроизвольно. Внутренняя мембрана митохондрий содержит полную дыхательную цепь с двумя дегидрогеназами (сукцината и НАДН). Известно несколько специфических ингибиторов переноса электронов. [c.435]

    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]


    Из всего многообразия электродов и цепей выделяют в отдельную группу те электроды (или составленные из них цепи), атомы которых не участвуют в электродных процессах, а служат лишь переносчиком электронов. Эти электроды и образованные из них цепи называются окислительно-восстановительными. [c.110]

    Окислительно-восстановительными, или редокс-электродами, называют такие полуэлементы, в которых материал электрода в реакциях не участвует, а является лишь переносчиком электронов для протекающей в растворе реакции между окисленной и восстановленной формами. Например Ре ++е=р Ре + или 5п + + 2 5п2+. [c.223]

    Ионы железа, кобальта и никеля — микроэлементы. В этом качестве ноны железа выполняют важные биологические окислительно-восстановительные функции в клетках организмов (Fe- +-f-4-e =Fe + Fe —e =Fe +) ион железа входит в состав гемоглобина, который действует как обратимый переносчик кислорода  [c.400]

    N 2+ до редко встречающихся многозарядных ионов ванадия и молибдена. Ионы металлов могут выполнять чисто структурные функции, однако чаще они прочно связаны с активным центром, принимая непосредственное участие в каталитической реакции. В этом случае роль иона металла может сводиться к стереоспецифическому образованию комплекса с молекулой субстрата, например с ее фосфатной группой. При катализе окислительно-восстановительными ферментами ион металла выступает в качестве переносчика электронов, осуществляя обратимый переход между двумя состояниями окисления. [c.149]

    Этот процесс, по суЩеству, не отличается от химического процесса, протекающего в медно-цинковом и в других элементах. В обоих случаях имеют место окислительно-восстановительные процессы, но в цепи между ионами олова и ионами железа металл электрода (платина) играет роль переносчика электронов, тогда как в медно-цинковом элементе электроды сами вступают в реакцию. [c.159]

    Катализ окислительно-восстановительных реакций, когда ион металла служит переносчиком электронов. [c.220]

    В патентной и технической литературе указывается на множество попыток ускорить процесс окисления сырья и придать определенные свойства окисленному битуму, применяя окислители, катализаторы и инициаторы. Так, в качестве окислителей предложено применять кислород, озон, серу, хлор, бром, иод, селен, теллур, азотную и серную кислоты, марганцовокислый калий и др. В качестве катализаторов окислительно-восстановительных реакций — соли соляной кислоты и металлов переменной валентности (железа, меди, олова, титана и др.) в качестве катализаторов алкилирования, дегидратации, крекинга (переносчика протонов) предложены хлориды алюминия, железа, олова, пятиокиси фосфора и т. п. в качестве инициаторов окисления — перекиси и др. Большинство из них инициирует реакции уплотнения молекул сырья в асфальтены, не обогащая битумы кислородом. [c.157]

    Инертные металлические электроды изготавливают из химически стойких металлов золота, платины, иридия и др. Они служат переносчиками электронов от восстановленной формы к окисленной, и их потенциалы зависят от соотношения активностей этих форм в растворе. Стандартная конструкция электрода представляет собой металлический стержень, впаянный или вклеенный в нижний конец стеклянной или пластмассовой трубки. С помощью проводника металлический стержень присоединяют к измерительному прибору. Платиновые электроды используют для измерения окислительно-восстановительных потенциалов от -0,1 до +0,9 В, золотые - от -1,0 до +0,3 В. [c.173]

    Еще один тип экспериментов основан на уравновешивании цепи переноса электронов с внешней окислительно-восстановительной парой, потенциал которой известен, с использованием разобщенных митохондрий. Значение < для данного переносчика можно затем определить по отношению [окисл.]/ [восстан.] согласно уравнению (10-12). В то время как изменения в значении уравновешивающего потенциала Е отразятся иа отношении [скисл.]/[восстаЯ.], значение Г останется по- [c.408]

    Железо играет весьма активную роль в жизнедеятельности любых организмов, связанную, прежде всего, с процессами переноса и обмена Оно входит в состав ферментов, катализирующих окислительно-восстановительные процессы, комплексов, служащих для передачи электронов, гемоглобина, являющегося переносчиком кислорода Велика роль железа в обмене нуклеиновых кислот, синтезе белков, в процессах фотосинтеза и дыхания растений, в других биохимических реакциях [c.499]

    Показано, что ряд дегидрогеназ использует только НАД и НАДФ (соответственно малатдегидрогеназа и глюкозо-6-фосфатдегидрогеназа), другие могут катализировать окислительно-восстановительные реакции в присутствии любого из них (например, глутаматдегидрогеназа см. главу 12). В процессе биологического окисления НАД и НАДФ выполняют роль промежуточных переносчиков электронов и протонов между окисляемым субстратом и флавиновыми ферментами (молекулярные механизмы участия пиридиновых нуклеотидов в этом процессе подробно рассматриваются в главе 9). [c.226]


    Дополнительным участником дыхательной цепи является железосерный белок FeS (негемовое железо). Он участвует в окислительно-восстановительном процессе, протекающем по одноэлектронному типу. Первый участок локализации FeS находится между ФМП и KoQ, второй - между цитохромами Ь и с . Это соответствует тому факту, что со стадии ФМП путь протонов и электронов разделяется первые накапливаются в митохондриальном матриксе, а вторые идут на гидрофобные переносчики - KoQ и цитохромы. [c.310]

    Порфириновые комплексы железа служат простетическими группами белков, являющихся необходимыми участниками процесса дыхания. Эти белки — миоглобин, в котором запасается молекулярный кислород (см. гл. 7), гемоглобин — переносчик молекулярного кислорода (см. гл. 7), цитохромы — ферменты, служащие переносчиками электронов в процессе окислительного фосфорилирования (см. 2.10). Железопорфириновую группировку содержат также окислительно-восстановительные ферменты каталаза и пероксидазы. [c.98]

    Все белки являются полимерами аминокислот. Общая формула такого полимера показана в нижней части рис. 21-1, а модель отдельной аминокислоты-на рис. 21-12. Ферменты представляют собой один из классов белков, причем, видимо, наиболее важный. Ферменты имеют компактные молекулы с молекулярной массой от 10000 до нескольких миллионов и диаметром от 20 А и выше. Они выполняют роль катализаторов, регули-руюидах биохимические реакции. Другие компактные молекулы белков, например миоглобин и гемоглобин, выполняют роль переносчиков и накопителей молекулярного кислорода (см. рис. 20-25, 20-26). Цитохромы-это белки, способные к окислительно-восстановительным реакциям и играющие роль промежуточных звеньев при извлечении энергии из пищевых продуктов (см. рис. 20-23). Молекулы гамма-глобулинов с молекулярной массой порядка 160000 представляют собой так называемые антитела, защитное действие которых заключается в том, что они присоединяются к вирусам, бактериям и другим чужеродным телам в живом организме и осаждают их из жидких сред. Все перечисленные белки относятся к глобулярным белкам. [c.313]

    В переносе энергии принимают участие еще две другие молекулы, с которыми следует познакомиться, прежде чем перейти к рассмотрению цикла лимонной кислоты. Одной из них является никотинамидадениндину-клеотид (НАД), структура которого показана на рис. 21-22. Эла молекула напоминает АТФ, так как тоже содержит адениновую группу, рибозу и фосфатную группу. Однако важнейшей частью НАД является никотиновое кольцо, которое может попеременно восстанавливаться и окисляться. Эта молекула является окислительно-восстановительным переносчиком энергии. Когда какой-либо метаболит окисляется на одной из стадий цикла лимонной кислоты, окисленная форма никотинамидадениндннуклеоти-да, НАД , может присоединить два атома Н и восстановиться с образованием НАД Н и Н . Другим важным переносчиком энергии является флавинадениндинуклеотид (ФАД). который восстанавливается в ФАД Н2. Оба этих переносчика энергии питают последнюю производственную линию биохимической фабрики запасания энергии, завершающ ю окислительный цикл дыхательной цепи. Она представляет собой четырехстадийный процесс, в котором принимают участие ферменты-цитохромы и происходит повторное окисление восстановленных переносчиков энергии НАД Н и ФАД Н2. В этом процессе кислород восстанавливается до воды, а выделяющаяся энергия запасается в молекулах АТФ. Каждый раз, когда происходит повторное окисление восстановленной молекулы-переносчика энергии, выделяемая при этом окислении энергия запасается путем синтеза нескольких молекул АТФ. [c.328]

    Общей чертой всех хинонных методов сероочистки (серо-цианоочистки) является размещение сероцианоочистки в голове технологического процесса - до улавливания аммиака и использование в качестве абсорбента аммиачной воды (10—15 г аммиака на 1 дм ), содержащей 0,2-0,3 г катализатора на 1 дм раствора. В качестве катализаторов используют различные окислительно-восстановительные системы, используемые как переносчики электронов при окислении в элементную серу. Используемые на предприятиях Великобритании и Японии (преимущественно), а также упоминаемые в литературе хинонные методы очистки носят разнообразные фирменные наименования и отличаются в принципе только [c.174]

    При рассмотрении индикаторных электродов, применяемых в потенциометрическом методе, по различным типам химической реакции можно заключить, что только в окислительно-восстановительных и кислотно-основных реакциях они являются универсальными. Независимо от природы окислителя или восстановителя в качестве индикаторного электрода в редоксметрии или редоксметрическом титровании может быть использован один и тот же благородный металл (платина или золото), являющийся переносчиком электронов. То же можно сказать об индикаторных электродах в методе рН-метрии или кислотно-основного титрования независимо от природы титруемых кислот или оснований и титрантов химическая реакция связана с изменением концентрации ионов водорода (pH) в растворе поэтому доста- [c.30]

    Любые электроды представляют собой окислительно-восстановительную систему. Однако принято называть окислительно-восстановительными электродами (или иначе редокс-электродами) электроды, на которых происходят окислительновосстановительные реакции, не сопровонгдающиеся фазовыми переходами. Металл в редокс-электроде не принимает участия в электродной реакции, а выполняет только функцию переносчика электронов (так же как в газовых электродах). [c.327]

    Важным свойством для проявления физиологического действия кислоты аскорбиновой является обратимый процесс ее окисления до дегидроаскорбиновой кислоты, т. е. окислительно-восстановительная способность кислоты аскорбиновой. В этом-случае она может быть донором, т. е. отдавать два атома водорода, окисляясь при этом в дегидроформу, и может быть акцептором водорода, т. е. принимать его, превращаясь в енольную форму. Вследствие обратимости этих процессов кислота аскорбиновая может служить переносчиком водорода в ферментативных системах и, следовательно, участвовать в окислитель-но-восстановительных процессах организма. Учитывая эту важную физиологическую роль кислоты аскорбиновой в 1-й стадии окисления, чтобы задержать дальнейший процесс его, при изготовлении растворов аскорбиновой кислоты для инъекций к ним добавляют различные стабилизаторы, например, гидросульфит натрия и другие, при этом обеспечивают необходимые условия хранения этих растворов (отсутствие света, соприкосновения с металлами, особенно солями железа). [c.383]

    В обсуждаемых до сих пор реакциях ионы металлов претерпевали обратимое окисление и восстановлевие. Однако в окислительно-восстановительных реакциях они могут выполнять и другую функцию, а именно служить мостиком и переносчиком электронов между двумя субстратами [15]. Ионы трехвалентного железа катализируют окисление аскорбиновой кислоты под действием перокоида водорода (гл. 8). Закономерности данного процесса легко объяснить в рамках следующего механизма  [c.238]

    На электродах гальванических элементов протекают реакции окисления-восстановления. Материал электродов при этом изменяется. Однако могут быть построены и такие элементы, электроды которых не претерпевают изменений, а являются лишь переносчиками электронов. Гальванический элемент, в котором электродами являются две платиновые пластины, опущенные в растворы РеС1з и К1, дает ток за счет окислительно-восстановительного процесса без участия в нем материала электродов. Он состоит из двух полуэлементов. [c.342]

    Как в химических гальванических элементах, так и в концентрационных, протекают окислительно-восстановительные процессы. Название же окислительно- восстановительные электроды (или редокс-электро-ды, что происходит от redu tion — восстановление и oxi/da/ion — окисление) применяется только в тех случаях, когда металл электрода не участвует в окислительно-восстановительном процессе, при работе элемента он не изменяется, а служит только переносчиком электронов. [c.137]

    Хотя интактные митохондрии представляют собой удобный объект для изучения механизмов биоэнергетики, для решения ряда задач ис пользуют более простые системы — субмитохондриальные фрагменты К числу таких задач относится изучение переноса электронов в дыха тельной цепи, локализованной во внутренней мембране митохондрий Существование системы мембран, барьеров проницаемости, системы пе реноса энергии и др. очень осложняет однозначную интерпретацию кинетики окислительно-восстановительных реакций в интактных митохондриях. В связи с этим были разработаны методы получения более простых препаратов субмитохондриальных частиц. Последние могут быть получены при действии на митохондрии либо детергентов, либо сильных механических воздействий (ультразвук, растирание с песком и т. д.). К числу различных субмитохондриальных фрагментов относится так называемый препарат Кейлина—Хартри, представляющий собой фрагменты внутренней мембраны митохондрий, почти лишенные ферментов цикла Кребса. Препарат имеет полный набор дыхательных переносчиков, обладает высокими активностями НАД-Н и сукцинатокси-дазы, стабилен при хранении. [c.407]

    С другой стороны, в ампульном растворе обнаружен фурфурол, который мог образоваться лишь в результате внутреннего процесса восстановления, сопровождаемого выделением двух атомов водорода, необходимых для превращения 2,3-дикето-1-гулоновой кислоты после ее декарбоксилирования в фурфурол. Из этого примера видно, что в процессе распада аскорбиновой кислоты участвует окислительно-восстановительный процесс,.причем можно предполагать, что переносчиком водорода является аскорбиновая кислота. [c.239]

    Окислительные коферменты, в состав которых входят особые структуры со строго определенным окислительно-восстановительным потенциалом коферменты этой группы выступают в роли переносчиков атомов водорода или электронов, как, например, NAD+, NADP+, FAD и липоевая кислота. [c.186]

    Уравновешивая систему добавлением окислительно-восстановительно- ю буфера , представляющего собой смесь компонентов пары, легко уравновешиваемой с цепью переносчиков (гл. 3, разд. В,1), можно устанавливать Е на каком-то заранее выбранном уровне [73]. Например, смесь сукцината и фумарата в отношении 1 1 фиксирует В равным -1-0,03 В, тогда как пара р-оксибутират — ацетоацетат в отношении 1 1 зафиксирует Е на значении, равном =—0,266 В. Рассмотрим потенциал одного из цитохромов Ь, который Вильсон с сотрудни ками обозначали как Ьк. Для цитохрома к =0,030 В. Подставляя это значение в уравнение (10-12) и фиксируя Е = —0,266 В (уравновешивая цепь р-оксибутиратом и ацетоацетатом), получим, как читатель легко проверит сам, что в равновесии для цитохрома Ьк отношение [окисл.]/[восстан.] составит около Ю . Другими словами, в разоб-. щенных митохондриях в отсутствие Ог этот цитохром будет почти це-. ликом находиться в восстановленной форме. [c.407]

    Окислительное фосфорилирование и дыхательный контроль. Функция дыхательной цепи—утилизация восстановленных дыхательных переносчиков, образующихся в реакциях метаболического окисления субстратов (главным образом в цикле трикарбоновых кислот). Каждая окислительная реакция в соответствии с величиной высвобождаемой энергии обслуживается соответствующим дыхательным переносчиком НАДФ, НАД или ФАД. Соответственно своим окислительно-восстановительным потенциалам эти соединения в восстановленной форме подключаются к дыхательной цепи (см. рис. 9.7). В дыхательной цепи происходит дискриминация протонов и электронов в то время как протоны переносятся через мембрану, создавая АрН, электроны движутся по цепи переносчиков от убихинола к цитохромоксидазе, генерируя разность электрических потенциалов, необходимую для образования АТФ протонной АТФ-синтазой. Таким образом, тканевое дыхание заряжает митохондриальную мембрану, а окислительное фосфорилирование разряжает ее. [c.311]

    В условиях аэробиоза распад углеводов до образования пировиноградной кислоты происходит так же, как и при анаэробиозе, но в отличие от него пировиноградная кислота полностью окисляется до диоксида углерода и воды в цикле трикарбован-ных кислот. В этом цикле последовательно протекают окислительно-восстановительные реакции, в которых под действием специфических дегидроназ происходит перенос водорода на молекулярный кислород. Однако перенос осуществляется не непосредственно, а через молекулы-переносчики, образующие дыхательную цепь. [c.1051]

    Биологическое окисление [4] катализируется ферментами, каждый из которых функционирует в соединении с коферментом, действующим в качестве переносчика электронов. Имеется многб ферментов окисления, но относительно немного коферментов. Именно последние определяют, будет ли процесс переноса электронов включать одиночные электроны, электронные пары и т. д, С переносом электронов связан процесс переноса водорода. Один из обсуждаемых ниже вопросов состоит в том, является ли описание окислительно-восстановительных реакций наилучшим в терминах переноса электронов или протонов, или, напротив, переноса частиц типа атома водорода или гидрид-иона. [c.581]

    Схема хемиосмотического сопряжения Митчелла показана на-рис. 13.7. Сопрягающей системой является мембрана. Донор водорода АНа (например, аскорбат) окисляется переносчиком электронов (например, цитохромом с) у внешней стороны мембраны,-Два электрона переносятся через мембрану по дыхательной цепп и посредством цитохромоксидазы передаются акцептору водорода В, т. е. кислороду. Акцептор присоединяет два протона из внутренней фазы митохондриального матрикса. Создается градиент концентраций протонов — их избыток во внешней и недостаток во внутренней жидкой фазе. Вследствие этого пронсходит перенос протонов через мембрану в противоположном направлении, в результате чего и реализуется фосфорилирование. Синтез одной молекулы АТФ приводит к поглощению днух протонов из внешней фазы и выделению двух протонов в матрикс. Митохондриальная мембрана работает как топливный элемент, в котором, разность электрохимических потенциалов создается за счет окислительно-восстановительного процесса. [c.433]


Смотреть страницы где упоминается термин Переносчики окислительно-восстановительные: [c.425]    [c.96]    [c.263]    [c.661]    [c.456]    [c.48]    [c.446]    [c.108]    [c.566]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Переносчик



© 2025 chem21.info Реклама на сайте