Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия химического переноса

    Все эти примеры служат иллюстрацией пассивного, но стереоселективного переноса, когда органические модельные системы осуществляют асимметричное узнавание. Однако можно провести аналогию между этими результатами и процессом опосредованного переноса через биологические мембраны. Все липидные мембраны практически непроницаемы для внутриклеточных белков и высокозаряженных органических и неорганических ионов, находящихся с обеих сторон мембраны. Диффузия Na+ через клеточную мембрану из клетки и К+ в клетку происходит в направлении отрицательного градиента химического потенциала и называется пассивным переносом. Пассивный перенос ионов через мембраны может быть вызван ионофорами [см. разд. 5.1.3]. К счастью, концентрации катионов по обе стороны мембраны различные, и такое состояние поддерживается активным переносом, который зависит от метаболической энергии. Механизм этого процесса известен под названием натриевый насос, функция которого сводится к поддержанию высокой внутриклеточной концентрации К+ и низкой концентрации Na+. Кальций, по-внднмому, также активно выводится из клеток. В этих случаях энергия для переноса обеспечивается за счет гидролиза АТР. Однако диффузия сахаров и аминокислот к важнейшим клеточным объектам — пример простого опосредованного пассивного переноса. [c.282]


    Для оценки окислительно-восстановительной способности более удобной оказалась другая термодинамическая величина — потенциал. Это связано с уникальной особенностью данного типа реакций полуреакции окисления и восстановления можно разделить в пространстве, поскольку при переносе электронов возникает электрический ток. Следовательно, энергию химической реакции можно преобразовать в электрическую. Практически такое преобразование осуществляется в гальваническом элементе. [c.178]

    Ферментативное поглощение Oj, сопряженное с запасанием энергии, подразделяется на процессы, не связанные с фосфорилированием, и процессы, сопровождающиеся фосфорилированием. В первом случае окисление, сопряженное с запасанием энергии, не связано с трансформированием свободной энергии в форму макроэргических фосфатных связей. Известно, что в клетке существуют две универсальные формы энергии химическая и электрохимическая (АДн" )- Один из путей получения энергии в форме трансмембранного электрохимического градиента Н" связан с переносом электронов на О2. Энергия в этой форме может использоваться клеткой для совершения разного вида работы (см. рис. 27). Химическая энергия заключена в основном в соединениях, содержащих макроэргические фосфатные связи, и в первую очередь в молекулах АТФ. Но на промежуточных этапах катаболических процессов, связанных в конечном итоге с поглощением О2, образуются метаболиты, содержащие богатые энергией связи, например тиоэфирные ( -S —КоА). Эти соединения могут непосредственно обеспечивать энергией некоторые биосинтетические процессы. [c.345]

    Это есть количество переноса. Можно эту величину назвать энергией химического переноса , так как она пред- [c.231]

    Для того, чтобы пространственно разделить процессы окисления и восстановления, можно использовать прибор, который получил название гальванического элемента. Гальванический элемент позволяет превратить энергию химической реакции в электрическую энергию. Благодаря пространственному разделению процессов окисления и восстановления перенос электронов осуществляется по внешней электрической цепи. Таким образом, мы получаем электричество при помощи химической реакции. [c.162]

    В химических цепях источником электрической энергии является свободная энергия химической реакции, протекающей в электрохимической системе. Уже рассмотренная цепь типа (П) обобщает свойства химических цепей без переноса. Один из электродов таких цепей должен быть обратимым по катиону, а другой — по аниону. Следующие примеры иллюстрируют различные комбинации электродов при построении таких цепей амальгамный электрод — электрод 2-го рода  [c.127]


    Электродвижущая сила цепи с переносом может быть обязана энергии химической реакции и осмотической работе. Например, в цепи с переносом [c.379]

    Представим теперь себе, что оба сосуда соединены между собой таким образом, что молекулы воды могут непосредственно, минуя газообразную фазу, переходить в сосуд с кислотой. В этом случае разрыв старых и образование новых химических связей происходит одновременно, и полная потенциальная энергия молекул воды плавно уменьшается по мере их проникновения вглубь раствора с кислотой. Последнее означает, что процесс теперь происходит в одну элементарную стадию (см. рис. 7). Энергия активации переноса молекул воды в кислоту становится при этом равной нулю, а энергия активации обратного процесса уменьшается на величину теплового эффекта испарения из сосуда с чистой водой [c.47]

    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно тушение свечения физическое или химическое, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению с временем релаксации для избытка энергии, возможна дезактивация с испусканием кванта изображенная на рис. 26 стрелкой, т. е. хемилюминесценция. В зависимости от механизма образования и природы [c.81]

    Физический смысл этих членов заключается в том, что при наличии реакции в тепловой поток включается перенос энергии химического сродства вследствие теплового движения молекул. Механизм этой энергии, так же как и механизм передачи внутренней энергии, — диффузионный. [c.277]

    Местная величина этой выталкивающей силы зависит от местной температуры и (или) концентрации. Эта сила записывается как результат уравновешивания инерционных сил н сил вязкости. Справедливо также уравнение неразрывности. Уравнение энергии учитывает наряду с другими видами энергии диффузионный и конвективный перенос тепловой энергии. Наконец, для каждого химического компонента существует уравнение баланса диффузии, конвекции и производства или исчезновения данного компонента в результате химических реакций. Поскольку уравнения теплового и химического переноса вещества зависят от и С, они не разделяются, а входят совместно в последнее уравнение баланса сил и количества движения в виде члена В. Это главный источник сложности механизмов, управляющих течениями, вызванными выталкивающей силой. Такие же трудности возникают и в других случаях, в которых сила зависит от местной плотности, например во вращающемся объеме жидкости. [c.28]

    На рис. 5.3 схематично представлено изменение энергии Гиббса в ходе химической реакции в двух различных растворителях I и II. Стандартная молярная энергия Гиббса исходных веществ К в растворителе 1 обозначена символом 01 , а в растворителе II — символом Разность энергий Гиббса в двух растворителях ((31 —называют энергией Гиббса переноса Аналогичные обозначения приняты и для активированного комплекса = [c.190]

    В первичной световой реакции энергия возбуждения переносится на Р-870 и один электрон передается от бактериохлорофилла особой пары иа акцептор. Окисленный Р-870 в свою очередь получает электрон от молекулы донора. Химическая природа этого донора и первичного акцептора пока неизвестна, [c.358]

    При переносе ионов в раствор из вакуума выделяется энергия сольватации и .. Эта энергия представляет энергию взаимодействия между ионами и растворителем. Следует заметить, что рассматривается химическая энергия сольватации, т. е. не учитывается изменение энергии при переносе ионов через границу раствора, несущую на себе фазовый потенциал, так как при переносе двух противоположно заряженных ионов эти энергии взаимно компенсируются. [c.28]

    Обзор В. И. Березина и С. Д. Варфоломеева знакомит читателя с достижениями в сравнительно новой области — на стыке ферментативного катализа и электрохимических реакций. Сопряжение ферментативных и электродных процессов открывает заманчивую перспективу — реализовать, по аналогии с энергетикой живых систем, трансформацию энергии химических реакций в электрохимический потенциал. В статье обсуждены проблемы переноса электрона между электродом и активным центром фермента и создания ферментных электродов. [c.5]

    Химическая кинетика является разделом статистической физики. В ней рассматривается временная эволюция систем, в которых, кроме переноса энергии и импульса, а также гидродинамического и диффузионного переноса частиц, происходит еще и специфический химический перенос и перераспределение частиц. Неравновесная химическая кинетика решает многочастичную и многоканальную задачи. В отличие от аррениусовой кинетики, где объектом исследования является поведение молекулы при наличии одного канала химической реакции, в неравновесной химической кинетике рассматривается многоканальная задача, а объектом изучения является молекула в данном (определенном) квантовом состоянии (динамическом и энергетическом). [c.36]


    В этом состоит явное различие между процессами диффузии и переноса тепла, хотя они очень близки в феноменологическом отношении. Термическая энергия всегда переносится в направлении снижения температуры это относится также к переносу тепла через границу раздела (если в системе имеет место градиент температуры). В каждом случае равновесие теплопередачи требует равенства температур в любой точке системы. При диффузии же концентрации обычно различаются с обеих сторон поверхности раздела даже при достижении равновесного состояния. Условием диффузионного равновесия является равенство химических потенциалов в каждой точке системы, и равным химическим потенциалам в разных фазах могут соответствовать значительно различающиеся концентрации. В случае диффузии аналогом температуры при теплопередаче служит химический потенциал. При описании диффузии приходится использовать концентрацию, так как не существует прибора для непосредственного измерения химического потенциала или абсолютной активности.  [c.180]

    Расщепление с помощью химической или электрохимической энергии (процессы переноса электронов). Свободные радикалы часто [c.587]

    При анализе поведения смешанных систем должны приниматься во внимание избирательное поглощение энергии и перенос энергии от одного компонента к другому, равно как конкуренция за химически реакционноспособные продукты. Хотя это разнообразие возможных реакций требует тщательного анализа наблюдений за поведением смешанных систем, получается широкий спектр продуктов, образование которых можно проследить в широком диапазоне концентраций. Этот путь часто позволяет проверить справедливость гипотез в различных условиях эксперимента. [c.94]

    Клеточное дыхание можно определить как нроцесс переноса электронов и протонов от субстрата к кислороду. Именно в этом процессе происходит запасание большей части энергии сгорания углеводов и жирных кислот, причем энергия запасается в виде энергии химической [c.56]

    Межмолекулярные взаимодействия. Для растворов ПАВ в малополярной среде, какой является смазочное масло, характерны все виды энергетических межмолекулярных взаимодействий химическое (ковалентная, координационная, ионная связи), ван-дер-ваальсово (ориентационные, индукционные и дисперсионные силы), внутримолекулярное и межмолекулярное (водородная связь), электронодонорно-акцепторное (ЭДА-ком-плексы с переносом заряда, ионное межмолекулярное взаимодействие и взаимодействие стабильных свободных радикалов). Энергия некоторых из перечисленных взаимодействий относительно высока (до 210 кДж/моль), значительно выше обычных ван-дер-ваальсовых сил (л 4 кДж/моль), а в некоторых случаях она приближается к энергии химических связей (350— 600 кДж/моль). [c.203]

    Установлено, что энергия активации вязкого течения увеличивается с понижением ПИ и роста СЭ соответствующих систем. На основании представленных результатов можно сделать неожиданный вывод, что вязкое течение полисопряженных ньютоновских углеводородных жидкостей связано с сильным химическим обменным взаимодействием или процессом переноса заряда. Таким образом, ньютоновское ючение жидкостей, содержащих п-электронные ароматические или непредельные соединения, связано с коллективным химическим взаимодействием частиц. Чем выше энергия химического взаимодействия молекулярных орбиталей, тем выше вязкость жидкости. Изложенное не прогиворе-чит существующим взглядам на природу жидкого состояния, как системы слабых химических связей [35] и решеточной теории растворов полимеров [c.102]

    Электрохимические элементы. Электрохимические элементы, непосредственно преобразующие энергию химического процесса в электрическую, называются химическими. Они состоят из неодинаковых электродов, и, следовательно, для них характерна различная химическая природа электродных реакций. Элементы, состоящие из одинаковых электродов, называются концентрационными. В этих элементах в электрическую энергию превращается работа процесса выравнивания активностей окисленной или восстановленной форм реагирующего вещества в обоих электродах. Элементы, в которых один и тот же раствор электролита является общим для обоих электродов, называются элементами без переноса. У них отсутствует диффузионный скачок потенциала. В противном случае говорят об элементах с переносом, имея в виду перенос ионов на границе контакта двух различных растворов. [c.291]

    Катодное перенапряжение можно рассматривать как дополнительное напряжение, прикладываемое к катоду (при этом происходит смещение потенциала катода далее в отрицательную сторону), а анодное — к ацоду (при этом потенциал анода также смещается далее в положительную сторону). Так, перенапряжение на катоде обусловлено тем, что переход гидратированного иона из водного раствора на катод связан с затратами энергии на перенос ионов металла из раствора к поверхности катода, на разряд катионов с образованием тех или иных химических процессов и т. д. [c.214]

    На рис. 5.2, а и б символом AG обозначена энергия Гиббса активации данной химической реакции в идеальном растворителе I, в котором не сольватируются ни исходные вещества, ни активированный комплекс. В растворителе И сольватируется только активированный комплекс и энергия Гиббса активации AGii снижается на величину, равную энергии Гиббса переноса AGi-,. , что приводит к повышению скорости реакции (рис. 5.2, а). Если же, как в растворителе П1, сольватируются только исходные вещества, то энергия Гиббса активации AGiu= повышается на величину, равную энергии Гиббса переноса AGi-.-iu , что сопровождается снижением скорости реакции (рис. 5.2,6). Сольватация продуктов реакции не влияет на ее скорость. Поскольку в реальных ситуациях сольватированы как исходные вещества, так и активированный комплекс (но обычно в разной степени), то скорость реакции в растворе в конечном счете определяется разностью энергий Гиббса переноса. [c.189]

    Несколько позднее (1918—1921) индийский физик Джапендра Чандра Гош в Калькутте независимо от С. Мильнера пришел к подобным же формулам. При выводе их Д. Гош исходил из идеализированных положений. Он принимал, что ионы в растворах пространственно расположены в закономерном порядке, подобно тому как они расположены в кристаллических решетках солей. Отсюда химическое равновесие в растворах не играет никакой роли. Силы, действуюш,ие между ионами, определяются исключительно электростатическим притяжением и отталкиванием. Д. Гош полагал также, что при прохождении электрического тока через раствор на преодоление межионных электрических сил не затрачивается никакой энергии. В переносе тока принимают участие лишь те ионы, которые обладают достаточной кинетической энергией. Далее при своих расчетах он имел в виду взаимодействие лишь между близко расположенными друг к другу ионами и полагал, что они могут образовывать насыщенные электрические дублеты . [c.244]

    Чтобы максимально использовать энергетические возможности, заложенные в процессе переноса электронов от субстрата на молекулярный кислород, необходимо было сформировать механизмы, позволяющие полностью отщеплять водород (электроны) от субстрата создать системы, в которых весь отщепленный водород передается на О2 наиболее рациональным путем образовать механизмы, при помощи которых энергия электронного переноса трансформируется в химическую энергию, доступную для ис-пользоваршя во всех энергозависимых процессах клетки. В ходе эволюции эти задачи были решены следующим образом. [c.356]

    Довольно большая часть энергии, поглощенной твердым телом, передается газообразным реагирующим веществам по трем возможным механизмам а) путем образования электронных возбужденных состояний, б) путем тепловых пиков и в) путем избирательного поглощения фотона. В этом случае радиация индуцирует реакцию сравнительно большая часть радиационной энергии превращается в химическую потенциальную энергию. Подобно радиационнохимическим процессам, в гомогенной среде можно проводить реакции, которые невыгодны по термодинамическим условиям. При условии, что вся энергия, поглощенная твердым телом, передается газообразным реагентам, а также что механизмы гомогенной и гетерогенной реакций одинаковы, величина не может превышать ( гом- Однако в большинстве эндотермических реакций, индуцируемых радиацией, энергия используется с очень низким выходом. На основании термодинамических соображений можно рассчитать максимальную величину С, которую обозначим символом Омане [25]. Величина Смаке равна 100/я, где Н — энтальпия реакции, выраженная в электрон-вольтах при температуре опыта. Для большинства гомогенных эндотермических реакций, индуцируемых радиацией, отношение (Сгом/Смакс) составляет несколько процентов [25]. Если предположить, что присутствие твердого тела приводит к более эффективному использованию радиационной энергии, то величина Окаж может быть иногда значительно больше, чем Сгом, по никогда не может превышать Смаке- При некоторых экзотермических реакциях с большой энергией активации перенос может рассматриваться в микроскопическом масштабе. Это относится к некоторым элементарным эндотермическим стадиям реакции. [c.223]

    В качестве примера цепи без переноса рассмотрим цепь Р1(Н2) НС 1 Ag l, Ag. В этой цепи нет границы между двумя растворами два электрода опущены в один и тот же раствор. Источником работы является энергия химической реакции взаимодействия водорода с хлористым серебром с выделением серебра и хлористого водорода V2H2 + Ag l Ag + H l. [c.704]

    В связи с указанным обстоятельством очень важными являются вопросы об энергетике и природе процессов микроразупорядочения поверхностных слоев, обусловленного теплотой реакции, т.е. иными словами вопрос об аккумулировании катализатором энергии химической реакции. Не менее важен вопрос о степени полезного использования и механизме перенос этой энергии на колебательные моды соответствующих поверхностных соединений в процессе релаксации разупоря-дочения. Заметим, что релаксация разупорядочения на том или ином участке поверхности может быть стимулирована реакцией, протекающей в этот момент на соседнем участке или участках. [c.269]

    Такое состояние дел требует развития новых подходов к решению проблемы определения стандартных термодинамических функций сольватации индивидуальных ионов. В настоящее время наиболее перспективным подходом к определению Д является метод квадрупольной релаксации ядер ионов Ы, так как этот метод применим к широкому кругу растворителей [62-67]. Сосредоточение исследований стандартных энергий Гиббса пфеноса между растворителями на одном типе ионов (в качестве которого выбран катион лития) позволяет решить важную задачу - получить надежный набор самосогласованных значений стандартных химических потенциалов для одного типа ионов, который может быть использован как ключевой для разделения стандартных энергий Гиббса переноса электролитов между растворителями на ионные составляющие без привлечения произвольных допущений, что открывает возможности получения наборов значений стандартных химических потенциалов остальных ионов. [c.207]

    В главе XIV мы увидим доказательства в пользу существования хлорофилл-белкового комплекса. Сохранность этого комплекса может быть необходима для фотосинтетической способности хлорофилла. Были разработаны различные методы экстрагирования этого комплекса из листьев, и оказалось, что такие экстракты имеют некоторые из свойств хлорофилла в листе (например, абсорбционный спектр, химическая устойчивость и флуоресценция). Однако и у них отсутствовала фотосинтетическая активность. Эйслер и Порт-гейм [21] сообщили, что искусственные хлорофилл-белковые комплексы, приготовленные добавлением лошадиного серума к хлоро-фильным растворам, могут восстанавливать двуокись углерода и выделять кислород на свету однако методы этих исследователей были грубы и отсутствовало детальное изложение опытов. Нет ничего удивительного в том, что хлорофилл-белковые комплексы неспособны к фотосинтезу, если вспомнить, что изолированные хлоропласты в лучшем случае сохраняют лишь часть своей нормальной фото-синтетической активности. Речь идет не о том, способны ли хлорофильные препараты к полному фотосинтезу, а о том, сохраняются ли в них какие-либо свойства, связанные с ролью хлорофилла в фотосинтезе. Как указано в главе Ш, эта роль сводится к утилизации световой энергии для переноса водородных атомов против градиента химического потенциала. Хлорофилл может это осуществлять или путем чисто физического переноса энергии к клеточной окислительно-восстановительной системе, или же, что более вероятно, прямым химическим участием в этой системе. Отсюда, следовательно, и возникает вопрос, образует ли хлорофилл in vitro окислительно-восстановительную систему, а если это происходит, то увеличивается ли при поглощении света окислительная способность окисленной формы или восстановительная способность восстановленной формы (или и то и другое). [c.73]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]

    Важным энергетическим резервом организма является запас гликогена в печени. Гликоген получается из глюкозы, содержащейся в крови. Превращение глюкозы в гликоген является синтетическим процессом, так как гликоген представляет собой высокомолекулярное вещество. Цепь превращений начинается с воздействия глюкозо-киназы, которая переносит фосфатный остаток с АТФ на глюкозу, в результате чего образуется глюкоза-6-фосфорная кислота. На это вещество действует ури-динтрифосфорная кислота (УТФ), УТФ отличается от АТФ тем, чтэ вместо аденозина в нем содержится уридин. В результате действия УТФ получается пирофосфорная кислота и уридинофосфоглюкоза. Эта последняя и служит материалом, из которого образуется гликоген. Образовавшаяся при этом уридиндифосфорная кислота (УДФ) для повторения цикла должна превратиться опять в УТФ, т. е. должна приобрести макроэргическую связь. Эта связь доставляется ей АТФ, которая, конечно, превращается при этом в ДДФ. АДФ может перейти снова в АТФ, присоединив неорганический фосфат и получив соответствующую порцию энергии. Энергия получается за счет процессов окисления, сопряженных с образованием АТФ, т. е. за счет окислительного фосфорилирования. Следовательно, для превращения энергии окисления в энергию химической связи гликогена необходимо осуществить два сложных цикла. [c.112]


Смотреть страницы где упоминается термин Энергия химического переноса: [c.233]    [c.109]    [c.10]    [c.181]    [c.468]    [c.468]    [c.177]    [c.216]    [c.231]    [c.386]    [c.693]    [c.292]   
Термодинамика необратимых процессов (1956) -- [ c.231 , c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Химическая энергия



© 2025 chem21.info Реклама на сайте