Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия диссоциации связей и теплота образования свободных радикалов

    Большой интерес представляют теплоты образования свободных радикалов, непосредственно связанные с энергиями диссоциации связей. Если соединение А—В диссоциирует на два свободных радикала по реакции [c.225]

    Теплоты диссоциации молекулярных соединений рассматриваются в гл. 6, первой из четырех глав, в которых идет речь о величинах теплот диссоциации, полученных на основании калориметрических данных. Глава 7 посвящена теплотам диссоциации органических молекул (одним из продуктов диссоциации таких молекул является свободный радикал), а также способам использования получаемых значений теплот образования радикалов для вычисления других энергий диссоциации по калориметрическим данным. В гл. 8 ранее вычисленные теплоты образования алкил- и арил-радикалов используются в свою очередь для вычисления энергий диссоциации связей металл — углерод в металлоорганических соединениях. Наконец, в гл. 9 дается обзор энергий диссоциации органических кислот и оснований в водных растворах. [c.26]


    Найденные значения энергии диссоциации ОН-связи в спиртах дают возможность определить теплоту образования любого алкоксильного радикала, используя которую по уравнению (УП1, 3) нетрудно найти и энергию диссоциации О—О-связи в соответствующей гидроперекиси. Теплота образования циклогексанола при 25° в газовой фазе составляет 71,8 ккал/моль. Теплота образования свободного циклогексо-ксильного радикала равна [c.229]

    Найденные выше значения теплот образования и энергий диссоциации связей позволяют получить ряд ценных сведений о свободном радикале СбНцО .При взаимодействии этого радикала с молекулой циклогексана происходит образование циклогексанола и циклогексильного радикала. При этом рвется связь СН в циклогексане и образуется ОН-связь в спирте. Тепловой эффект этой реакции положителен и равен разности энергий диссоциации этих связей <7=12 ккал/моль (здесь и в дальнейшем будем считать, что энергия диссоциации ОН-связи в спиртах равна в среднем 102 ккал/моль). Используя соотношение Поляни—Семенова, находим, что энергия активации этого процесса приблизительно составляет 8,5 ккал/моль, т. е. относительно невелика. Это говорит о довольно высокой реакционной способности радикала СеНцО . [c.230]

    Знание энергии диссоциации ОН-связи в гидроперекиси циклогексила позволяет найти теплоту образования свободного циклогексилпероксидного радикала. Величины теплот образования ряда свободных радикалов и энергии диссоциации связей сведены в табл. 25. Точность приведенных величин лежит, по-видимому, в пределах 3 ккал/моль. [c.233]

    Для свободных радикалов, если не считать таких стабильных радикалов, как N0, ЫОг, СЮг и ЫРг, имеется очень мало прямых термохимических данных. Почти все наиболее достоверные значения теплот образования получены из кинетических измерений энергий диссоциации связей, в то время как энтропии и теплоемкости можно вычислить лишь с помощью статистических методов. Все это является- причиной ограниченности тех сведений, которые имеются по термохимии свободных радикалов. Теплоты образования обычно определены с погрешностью ккал/моль, а часто со значительно худшей точностью. Однако молено ожидать, что правила аддитивности свойств групп применимы и к радикалам, и поэтому можно вывести для любого алкильного радикала, если известна соответствующая величина для СН3СН2, (СНз)2СН и (СНз)зС. Энтропии радикалов могут быть рассчитаны на основе аддитивности свойств групп из энтропий простейщих радикалов, однако для последних энтропии должны быть вычислены исходя из предполагаемых структур радикалов и частот колебаний. Хотя есть основания полагать, что замещенные метильные радикалы плоские и поэтому имеют более высокую симметрию, чем неплоские радикалы, все же оценки, которые можно сделать для радикалов, характеризуются некоторой неопределенностью. При рассмотрении электронной вырождениости, как и ранее, мы будем учитывать только спиновую вырожденность, т. е. мультиплетность, и для радикалов, имеющих один неспаренный электрон, [c.65]


    По обоим методам (реакция с кислородом и окисью азота) энергия активации диссоциации гексафенилэтана оказалась равной 19 ккал (+1%). Циглер обратил внимание на тот факт, что энергия активации, требуемая для разрыва центральной связи С — С в гексафенилэтане, значительно больше теплоты диссоциации (ДЯ), которая составляет только 11 ккал (4 1%). Он указал, что у свободного радикала трифенилметила в растворе энергия, повидимому, на 3—4 ккал меньше, чем в момент образования. Вычисления Конанта показывают, что в ряду диксантила энергии активации (Е) также отличаются от теплот диссоциации ( А Я), но, к сожалению, его значения Д// основаны на весьма сомнительных теоретических предположениях [c.67]


Смотреть страницы где упоминается термин Энергия диссоциации связей и теплота образования свободных радикалов: [c.162]   
Смотреть главы в:

Теплоты реакций и прочность связей -> Энергия диссоциации связей и теплота образования свободных радикалов




ПОИСК





Смотрите так же термины и статьи:

Свободная энергия

Свободная энергия диссоциации

Свободная энергия связь с теплотой

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы образование

Свободные радикалы, теплоты

Свободные радикалы, теплоты образования

Связь связь с энергией

Связь энергия Энергия связи

Теплота диссоциации

Теплота образования

Теплота образования ira связь

Теплота, Энергия диссоциации

Энергия диссоциации

Энергия образования

Энергия свободная образования

Энергия связей в радикалах

Энергия связи

энергий теплота



© 2025 chem21.info Реклама на сайте