Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота, Энергия диссоциации

Рис. 15. Цикл Борна—Габера для расчета теплоты сольватации или растворения поваренной соли в воде ДЯ/ — теплота образования О — энергия диссоциации АЯсубл — теплота возгонки 1 — потенциал ионизации Ел — сродство к электрону ДЯсольв — теплота сольватации ДЯ=ДЯсольв—А//раст, Рис. 15. <a href="/info/2386">Цикл Борна—Габера</a> для <a href="/info/34236">расчета теплоты</a> сольватации или <a href="/info/706731">растворения поваренной соли</a> в воде ДЯ/ — <a href="/info/2775">теплота образования</a> О — <a href="/info/3619">энергия диссоциации</a> АЯсубл — <a href="/info/3539">теплота возгонки</a> 1 — <a href="/info/2632">потенциал ионизации</a> Ел — сродство к электрону ДЯсольв — <a href="/info/145468">теплота сольватации</a> ДЯ=ДЯсольв—А//раст,

    Теплота первой реакции равна 102 ккал. а второй — 347,5 ккал таким образом, энергия диссоциации связи С—Н в метане равна 102 ккал, а средняя энергия связи составляет 86,9 ккал. Последняя величина рассчитана по термохимическим данным и зависит от величины скрытой теплоты сублимации графита, а первая является экспериментальной величиной, полученной на основе кинетических измерений. Зависимость между ними заключается в том, что в данном случае сумма индивидуальных энергий диссоциации связи в СН , СНд, СНз которые сильно различаются между собой, должна быть равна четырехкратной средней энергии связи. Таблицы энергии связи, составленные, нанример, Паулин-гом [33], дают сведения о средней энергии связи и не имеют прямого отношения к проблемам разложения углеводородов, поэтому дальше будут рассматриваться только методы определения энергии диссоциации связи. Раньше всех стали изучать энергию диссоциации связи в сложных молекулах Поляни и сотрудники [7], которые исследовали пиролиз ряда иодидов в быстром потоке несуш,его газа при низких давлениях иодидов, В этих условиях, по их мнению, вторичные реакции не представляют важности, и измеренная" энергия активации соответствует энергии реакций  [c.14]

    Энергии диссоциации молекул N5 и Н2 соответственно равны 9456 и 436 кДж/моль. Вычислить атомарную теплоту образования аммиака и среднюю энергию связи М—Н. [c.77]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]


    Релей и др. приравняли это значение к энергии диссоциации перекиси. Чтобы подтвердить идентичность этих величии, авторы попытались рассчитать энергию диссоциации связи перекиси, исходя пз известных теплот образования перекиси, трет-бутало-вого спирта, изобутана и трет-бутильного радикала. К сожалению, такие расчеты могут [c.319]

    Энергии диссоциации Н2, I2 и теплота образования НС1 соответственно составляют 436, 243 и —92 кДж/моль. Вычислить атомарную теплоту образования H I и энергию связи H I. [c.75]

    Ими была определена энергия активации обратной реакции. Так как теплота реакции является разностью между энергией активации прямых и обратных реакций, то отождествление наблюдаемой энергии активации с энергией прямой реакции дает возможность рассчитать теплоты реакции. После этого, используя стандартные термохимические данные, можно-рассчитать энергию диссоциации связи Н—Н. Механизм реакции был лучше всего изучен для метана и достаточно хорошо для этана. Для этих случаев вычисленные энергии диссоциации имеют погрешность до 3 ккал. [c.15]

    Энергия разрыва связи — одна из основных количественных характеристик строения молекул. У двухатомных молекул энергии связи тождественны энергиям (точнее, теплотам А1/ или АН) диссоциации. По значениям энергий связей можно с хорошим приближением вычислять теплоты образования молекул и теплоты реакций. Энергии диссоциации вычисляют по закону Гесса из термохимических или находят непосредственно из спектроскопических измерений. [c.338]

    Тогда для раствора соляной кислоты энтальпия иона хлора будет равна ДЯс1°= —167,45 кДж/моль. Теплота растворения соли в воде может быть определена на основе цикла Борна — Габера, иллюстрация которого приведена на рис. 15. Причем численные значения энергии диссоциации О известны из спектральных измерений. [c.66]

    Прямая рекомбинация молекулярного водорода с атомом кислорода на третьем теле с образованием Н О — это очень тяжелый процесс, причем основные затруднения имеют скорее пространственный (стерический фактор порядка 10- 10- ), чем энергетический характер. В то же время обратная реакция (диссоциация Н О на О и Hg) затруднена в основном энергетически, и теплота реакции практически целиком равна энергии диссоциации, будучи при этом чуть выше энергии диссоциации конкурирующей реакции 8 . Данные по экспериментальному и теоретическому определению значений кгв полностью отсутствуют, что в значительной степени объясняется почти единодушным мнением в том, что реакция 26 не играет важной роли в механизме окисления. Расчет значений /с = /(Т, М) по формулам (4.10), (4.11) не приводит к удовлетворительным результатам вследствие тех же причин, что и при расчете kjo, кгз- При экспериментальном определении Age следует учитывать два обстоятельства во-первых, наличие конкурирующей реакции 4 и, во-вторых, что имеется по крайней мере 4 линейные комбинации более быстрых маршрутов 13 10, 23 - 28, 2 -> 24, 21 29, сильно маскирующих основную медленную стадию 26. Из численного моделирования следует, что нигде термодинамическая доля 26 не выше предельных значений 0,01—0,02, что подтверждает справедливость предположения о ее незначительности. [c.291]

    Вычислите стандартную теплоту образования иона водорода Н+, если известны энергия диссоциации молекулы Нг и энергия ионизации атома водорода. [c.20]

    Совершенно очевидно, что энергия активации обратных реакций равна нулю, отсюда изморенная энергия активации становится равной теплоте реакции, а также энергии диссоциации связи В—1 [c.14]

    Теплоты (энергии) диссоциации на атомы при О К равны суммам энергий всех связей в молекуле  [c.68]

    Для химиков-органиков и технологов-нефтяников и нефтехимиков значительный теоретический и практический интерес представляют величины связей в молекулах углеводородов и гетероорганических молекулах. Для расчета энергий связи в молекулах углеводородов необходимо знать теплоту возгонки твердого углерода, теплоту образования углеводорода из простых веществ и энергию диссоциации Нг. Расчет проводится с применением следующих термохимических уравнений  [c.71]

    Все методы измерения энергии диссоциации связи / —Н дают величины соответствующей энергии диссоциации связи/ —В путем комбинаций данных по теплотам образования В—В и / —Н. Надежность измерений энергии диссоциации связи можно оценить из сравнения величин, полученных различными методами (табл. 2). [c.16]

    Таким образом, теплота диссоциации адсорбированной молекулы гораздо ниже, чем теплота диссоциации молекулы, находящейся в объеме. Если считать, что энергия активации процесса диссоциации близка к энергии диссоциации, то скорость диссоциации молекул на поверхностях будет выше, чем скорость диссоциации в объеме. Поверхность будет играть роль катализатора. Но катализатор не смещает положения равновесия, следовательно, концентрация атомов в объеме, независимо от того, имеется поверхность или нет, будет одной и той же. Если же в объеме возможен процесс, связанный с потреблением атомов, то при наличии поверхности этот процесс будет идти быстрее, чем чисто объемный процесс. [c.83]


    Химия изучает вещества и их превращения. Свойства веществ опреде.пя-ются атомным составом и строением молекул или кристаллов. Химические превращения сводятся к изменению атомного состава и строения молекул. Поэтому понимание химических процессов невозможно без знания основ теории строения молекул и химической связи. Число известных химических соединенш имеег порядок миллиона и непрерывно возрастает. Число же возможных реакций между известными веществами настолько велико, что вряд ли можно надеяться на описание их всех в обозримом будущем. Поэтому так важно знание общих закономерностей химических процессов. Термодинамика позволяет предсказать направление процессов, если известны термические характеристик, веществ — теплоты образования и теплоемкости. Для многих веществ этих данных нет, но они могут быть с высокой точностью оценены, если известно строение молекул или кристаллов, если известна связь между термодинамическими и структурными характеристиками веществ. С другой стороны, статистическая термодинамика позволяет рассчитывать химическое равновесие по молекулярным постоянным частотам колебаний, моментам инерции, энергиям диссоциации молекул и др. Все эти постоянные могут быть найдены спектральными и другими физически.ми методами или рассчитаны на основе теоретических представлений, но для этого надо знать основные законы, управляющие движением электронов в атомах и молекулах, и строение молекул. Это одна из важных причин, почему мы должны изучать строение молекул и кристаллов, теорию химической связи. [c.5]

    Для разрушения (диссоциации) солп на отдельные ионы требуется большое количество теплоты (энергии). В основном эта теплота получается за счет энергии гидратации ионов. При этом теплота гидратации положительных ионов, обладающих малым радиусом или особенно малым радиусом и одновременно большим зарядом, значительно больше теплоты гидратации анионов. [c.15]

    Определите стандартную теплоту образования газообразного иона С1 , если известны энергия диссоциации молекулы СЬ и сродство атома С1 к электрону. [c.20]

    Положив теплоту адсорбции этана на кварце равной 12 ккал моль и приняв, что теплоты адсорбции других алканов увеличиваются в гомологическом ряду, согласно правилу Траубе [202], а энергии диссоциации С—С связей в молеку- [c.120]

    Рассчитайте теплоту образования N0 по известным значениям энергии диссоциации молекул N2, О2 и N0. Постройте энтальпийную диаграмму для расчета теплоты образования N0. Сравните вычисленное значение АЯобр N0 с табличными данными. [c.20]

    Важной характеристикой связи является энергия диссоциации. Следует отличать энергию связи от энергии диссоциации связи для сложных молекул (более чем двухатомных). Так, например, энергия разрыва связи НО—Н в молекуле НгО, т. е. тепловой эффект реакции Н20 = Н0 + Н составляет 118 ккал1моль, в то время как средняя энергия связи О—Н в молекуле НгО равна половине се теплоты атомпзацип, т. е. половине теплового эффекта реакции [c.113]

    Так как Ад = 22,9 ккал моль и ЯТ 0,6 ккал моль, то получаем д//-( дс) 23 3 ккал моль. Зная теплоту адсорбции водорода на ртути и энергию диссоциации молекул Нз ( 104 ккал моль), можно вычислить энергию адсорбционной связи Hg — Н Ец .н = 4 X X 104 — 23,3 29 ккал моль. Если предположить, что изменение перенапряжения водорода при переходе от Pt к Hg целиком обусловлено изменением энергии адсорбции атомарного водорода, то получается Ене-н 27 ккал моль. Таким образом, экспериментальные данные подтверждают основные положения теории замедленного разряда о влиянии материала электрода на скорость электрохимической реакции. [c.289]

    Причем молекула и атомы находятся в основных состояниях. Наряду с этим используют и величину изменения энтальпии в том же процессе при 298 К, называемую теплотой атомизации АН- д атомизации, или i) 98). Верхний кружок над символом обычно опускают Сравнение энергий диссоциаи(ии двух одинаково построенных молекул позволяет судить об их срав1Н[ительной устойчивости по отношению к распаду на атомы, о прочности химической связи в них. Например, энергия диссоциации метана 0( 4 ) = 1642 кДж/моль, а для четырехфтористого углерода 1)о(Ср4) = 1948 кДж/моль, из чего следует большая устойчивость молекулы СР4 1ю сравнению с СН4.. [c.179]

    Приведенные цифры показывают, что вследствие небольшой теплоты диссоциации быстро наступает распад молекул щелочных металлов на атомы. В подгруппе с повышением порядкового номера энергия диссоциации уменьшается. [c.232]

    Металлоидная активность галоида (в растворе) пропорциональна энергии, выделяющейся при переходе его атома от обычного состояния к гидратированному иону Г. Энергия эта равна алгебраической сумме половины энергии диссоциации молекулы Гг, сродства атома Г к электрону и энергии гидратации иона Г". Если галоид при обычных условиях не газообразен, то должна быть учтена также теплота его испарения (приблизительно 4 ккал г-атом д.пя Вг и 7 ккал г-атом для I). Такая суммарная энергия имеет следующие значения ккал г-атом)  [c.271]

    Однако этот простой путь может привести к неверным результатам. Прежде всего следует сказать, что само понятие энергии связи имеет ясный физический смысл только для двухатомной молекулы с одной химической связью. В этом случае энергия связи равна энергии диссоциации данной молекулы на атомы. Для молекул, имеющих несколько связей одного и того же вида (Н2О, NHз, СН4 и др.), следует считать все связи равнозначными и за величину энергии отдельных связей принимать соответствующую долю ДЯат. Например, для СН4 за энергию связи принимают ДДЯат метана. Определенные таким образом величины энергии связей являются некоторыми средними значениями и не соответствуют величинам энергий, которые необходимо затрачивать для того, чтобы оторвать от молекулы данный атом. Еще более нечетким становится понятие энергии отдельных связей в молекулах, содержащих различные виды связей. Поэтому найденные таким образом энергии связи следует рассматривать только как некоторые эффективные величины, которые используются в вычислениях стандартных теплот образования при 25° С. [c.33]

    Вычислите теплоту образования НР по известным значениям энергии диссоциации Рг, Нг и НР. Постройте энтальпийную диаграмму для расчета теплоты об1разования НР. Сравните вычисленное значение ДЯобр НР с табличными данными. [c.19]

    Расрчитайте теплоту образования N0, исходя из энергии диссоциации N2, О и N0. [c.66]

    Рассчитаем энергию связи Н—С1 (АЯ) в молекуле H I по известной теплоте образования НС1(АЯойрНС1=—92 кдж моль) и энергии диссоциации молекул Нг(АЯ1= [c.199]


Смотреть страницы где упоминается термин Теплота, Энергия диссоциации: [c.65]    [c.534]    [c.13]    [c.357]    [c.71]    [c.222]    [c.119]    [c.54]    [c.79]    [c.124]    [c.274]    [c.274]    [c.161]    [c.87]    [c.57]    [c.137]    [c.67]    [c.171]    [c.204]   
Методы сравнительного расчета физико - химических свойств (1965) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Теплота диссоциации

Теплота диссоциации из спектроскопических энергии связей

Теплоты образования и энергии диссоциации

Теплоты образования и энергии диссоциации метана и его галоидозамещенных

Теплоты образования компонентов реакции окисления циклогексана и энергии диссоциации связей

Энергия диссоциации

Энергия диссоциации связей и теплота образования свободных радикалов

Энергия разрыва химических связей (теплота диссоциации)

Энергия также Тепловой эффект, Теплота, Энтальпия диссоциации

Энергия также Тепловой эффект, Теплота, Энтальпия ионной диссоциации

энергий теплота



© 2025 chem21.info Реклама на сайте