Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикалы реакционная способность при полимеризации

    Реакция передачи цепи протекает также при полимеризации в неполярных растворителях (углеводородах). Скорость этой реакции, как и других реакций радикального замещения, сильно зависит от структуры участвующи.х в ней веществ (мономера и агента передачи цепи). Скорость передачи цепи главным образом определяется подвижностью атомов или групп атомов, которые переносятся на растущий радикал, и сильно возрастает с повышением реакционной способности радикала [c.71]


    Скорость реакции роста цепи при радикальной полимеризации зависит как от реакционной способности мономера, так и от активности свободного радикала. Поляризованная молекула мономера будет легче реагировать со свободным радикалом. [c.106]

    Хотя процессы передачи цепи обычно и приводят к уменьшению степени полимеризации, не вызывая в то же время изменений в скорости полимеризации, это зависит от реакционной способности образовавшегося в результате передачи цепи радикала Если последний достаточно неактивен, он не будет продолжать- полимеризации, а погибнет в результате взаимодействия <с другими полимерными радикалами  [c.523]

    Сравнительно низкая эффективность полимеризации этилена является, по-видимому, также результатом низкой эффективности инициатора. Этого можно было ожидать, так как соединение инициатора радикала с молекулой мономера формально является тем же развитием реакции. Низкая реакционная способность молекулы этилена и вытекающая отсюда низкая эффективность инициатора находят свое отражение в чувствительности полимеризации этилена к типу инициатора. В этом отношении этилен, по-видимому, уникален. Многие инициаторы свободных радикалов дают лишь незначительные выходы полиэтилена даже при наиболее благоприятных условиях. Вследствие этого было выдано многО патентов на приготовление катализаторов, специфических для проведения полимеризации этилена. Самые разнообразные требования предъявлялись к этим катализаторам, включая высокую степень превращения этилена, полимеризацию при низких давлениях и температурах, хорошее качество полимера и др. Многие из этих требований весьма сомнительны. [c.172]

    Степень разветвленности получаемых этим путем привитых сополимеров зависит от скорости передачи цепи. Последняя, в свою очередь, зависит от концентрации полимера, температуры, реакционной способности радикала прививаемого мономера и подвижности атомов, входящих в состав полимерной цепи. Для повышения скорости реакции передачи цепи часто в полимер заранее вводят группы, содержащие подвижные атомы. Так, сополимеризацией стирола с бром-стиролом или бромированием полистирола получается бромсодержащий полимер, легко отщепляющий бром. При полимеризации в его [c.206]

    Подобная закономерность в изменении s-факторов наблюдается-и для реакций радикальной полимеризации, но только при гораздо более низких температурах. Присоединение полимерного радикала ко второй молекуле мономера (этилена или пропилена) связано с резким уменьшением s-фактора, но при последующем присоединении третьей и четвертой молекул мономера к полимерному радикалу s-фактор практически не изменяется [273]. Постоянное значение стерических факторов реакций роста цепи можно рассматривать как обоснование эмпирического положения об относительно одинаковой реакционной способности полимерных радикалов различной длины, принимаемого в кинетике полимеризационных процессов [73]. В случае реакций присоединения непредельных молекул друг к другу, например при молекулярной полимеризации этилена, образование димера имеет сравнительно высокий s-фактор ( 0,1), но присоединение третьей молекулы к димеру, или образование тримера, сопряжено с резким уменьшением s-фактора на 3—4 порядка [273]. Это может объяснить задержку полимеризации на стадии димеризации [274]. В связи с этим роль катализаторов наряду с обычным понижением энергии активации состоит в устранении пространственных затруднений (на стадии образования тримера и далее) путем сильного увеличения стерического фактора. [c.181]


    Если для полимеризации используют не один мономер ( гомополимеризация ), а смесь мономеров ( сополимеризация ), то можно получить сополимеры, каждая макромолекула которых содержит мономерные звенья нескольких типов [8]. В простейшем случае сополимеризации с использованием всего двух мономеров (М и М ) реакция может протекать с промежуточным образованием любого из двух типов растущих радикалов радикала, оканчивающегося звеном М, или радикала, оканчивающегося звеном М. Если каждый из этих радикалов имеет одинаковую реакционную способность по отношению к обоим мономерам, то основными факторами, влияющими на вероятность их взаимодействия с тем или иным мономером, будут относительная концентрация мономеров (которую можно регулировать скоростью подачи каждого из них) и относительная реакционная способность одного мономера по сравнению с другим. При этом образуется сополимер с нерегулярным чередованием звеньев (2). Примером такой сополимеризации является сополимеризация стирола и бутадиена-1,3. Если же растущий радикал, оканчивающийся мономерным звеном одного типа, реагирует только со вторым типом мономера, то образуется сополимер, в цепи которого наблюдается правильное чередование элементарных звеньев обоих типов (альтернирующий сополимер) (3). [c.304]

    Передача цепи. Для процессов полимеризации, протекающих в среде растворителя, а также для полимеризации мономеров, в молекулах которых имеются подвижные атомы или группы, характерны реакции передачи цепи. В этом случае насыщение макрорадикала происходит вследствие присоединения атомов или групп, отщепляющихся от других молекул (мономера, полимера, растворителя и др.). В результате образуются валентно-насы-щенная макромолекула полимера и свободный радикал, начинающий новую молекулярную цепь. Таким образом, при передаче цепи прекращение роста макромолекулы не приводит к уничтожению кинетической цепи. Если реакционная способность новых радикалов, образующихся при передаче цепи, мало отличается от активности начальных радикалов, инициирующих образование кинетических цепей, то передача цепи заметно ие изменяет скорость полимеризации, но приводит к образованию полимера с пониженным средним молекулярным весом. Протекание реакций передачи цепи может быть обнаружено из сопоставления молекулярного веса и скорости полимеризации при различных концентрациях веществ, на молекулы которых передаются цепи. [c.125]

    Для образования макромолекулы одна из молекул ненасыщенного или циклического вещества должна быть переведена в состояние высокой активности. Такая молекула приобретает способность вступать в реакцию с неактивированными молекулами, последовательно присоединяя их. Реакционная способность растущей цепи при этом не утрачивается. Активация молекул ненасыщенного или циклического соединения связана с разрывом двойной связи или разрушением цикла. Если в результате разрыва связи молекула превращается в радикал, происходит радикальная полимеризация. Разрыв кратной связи молекулы может привести к образованию иона, в этом случае реакция протекает по законам ионной полимеризации. Если начальный ион приобретает положительный заряд, происходит катионная полимеризация, а в случае образования отрицательно заряженного иона—анионная полимеризация. [c.396]

    Представляет интерес рассмотреть влияние заместителей в фенильном радикале на эти константы. Как известно, скорость реакции роста цепи определяется в основном активностью полимерного радикала, а не мономера. Обобществление я-электронов в системе, т. е. появление сопряжения винильной связи с какими-либо группами, в большей степени снижает реакционную способность радикала, чем мономера. В молекулах метакриламидов наличие заместителей в бензольном кольце, связанном с азотом ЫН-группы, обладающим свободной парой электронов, смещает электронное облако в сторону сопряженной карбонильной группы, чем в определенной мере повышает электронную плотность на двойной связи С = С. Этим самым повышается реакционная способность радикала, обусловливающая скорость гомополимеризации. Таким образом, за счет наличия групп, отталкивающих электроны в направлении СО-группы, повышается реакционная способность полимерных радикалов и возрастает скорость полимеризации. При введении в бензольное кольцо электронофильных заместителей свободная пара электронов оттягивается в сторону фенильного радикала тем самым облегчается взаимодействие неспаренных электронов с карбонильной группой. За счет этого увеличивается степень делокализации электронов в радикале, что, в свою очередь, снижает реакционную способность такого радикала, а следовательно, и скорость гомополимеризации (см. табл. 21). Так как в реакции электровосстановления принимает участие двойная связь С = С, то полярографические характеристики также зависят от величины электронной плотности на этой группе. [c.188]


    Реакционная способность мономеров при раздельной полимеризации обычно отличается от их реакционной способности при сополимеризации. Так, скорость раздельной полимеризации винилацетата значительно превышает скорость полимеризации стирола. При сополимеризации винилацетата со стиролом реакционная способность стирола во-много раз превышает реакционную способность винилацетата, так как в этих условиях образование стирольного свободного радикала, малоактивного вследствие сопряжения с бензольным кольцом, оказывается энергетически более выгодным, чем образование радикала винилацетата. Аналогично винилхлорид раздельно полимеризуется с большей скоростью, чем стирол. При сополимеризации же стирола с винилхлори-дом реакционная способность стирола настолько больше, чем винил-хлорида, что сополимер практически не образуется. [c.114]

    Недавно было показано, что хлорное железо может служить идеальным ингибитором или замедлителем при полимеризации некоторых мономеров [33, 34]. Поскольку процесс включает реакцию восстановления трехвалентного железа до двухвалентного, нет никакой неопределенности в значении т каждый радикал реагирует с одним ионом трехвалентного железа. Кинетическая трактовка этих реакций приведена полностью в гл. 6, в которой дано точное определение эквивалентного индукционного периода и рассматривается метод его измерения. Для определения скорости инициирования в этом случае надо знать только количество образовавшегося двухвалентного железа последнее может быть измерено с достаточной точностью волюмометрическим методом. Таким путем была изучена полимеризация акриламида в водном растворе [33], а также стирола, акрилонитрила, метакрило-нитрила, метилакрилата и метилметакрилата в неводных растворах [34]. Некоторые осложнения наблюдались в случае винилацетата, что, возможно, связано с высокой реакционной способностью его радикалов. [c.72]

    Добавки, которые в общем не влияют на скорость полимеризации, но вызывают снижение ОР образующегося полимера, значительно большее, чем это наблюдается при простом разбавлении, называются передатчиками цепи. Поскольку характер влияния добавок на скорость полимеризации и ОР образующегося полимера является функцией как реакционной способности молекулы добавки относительно мономера или полимерного радикала, так и стабильности продукта, строгая дифференциация различных типов поведения этих веществ может представлять некоторые трудности. Действительно, одно и тоже вещество, в зависимости от различных условий (температуры, концентрации и т. д.), может реагировать с различными мономерами неодинаково. Однако для данного вещества преобладает обычно один тип поведения и для удобства классификации в настоящей главе отдельные влияния добавок на полимеризацию рассмотрены в следующем порядке инициирование, передача цепи, ингибирование и замедление. [c.232]

    Нитросоединения. Нитро- и нитрозопроизводные ароматических соединений обычно снижают скорость полимеризации, не вызывая индукционных периодов (исключение из этого правила представляет полимеризация винилацетата в присутствии некоторых нитросоединений [136], которые ведут себя как ингибиторы, преимущественно вследствие высокой реакционной способности поливинилацетатного радикала по отношению к этим соединениям). Причиной замедляющего действия нитросоединений, очевидно, является резонансная стабилизация продуктов их соединения с радикалами. Прайс [137] предположил, что в этом случае идет реакция следующего типа  [c.281]

    В ряду олефинов реакционная способность возрастает от этилена к пропилену, а дальше падает с увеличением молекулярного веса олефинов. Олефины изостроения более реакционноспособны, но они легче подвергаются полимеризации в присутствии катализаторов на основе фтористого бора, а поэтому продукты алкилирования получаются с более низким выходом. То же относится и к фенил замещенным олефинам. Циклогексен можно сравнить с пропиленом или бутеном-2. В ряду гомологов бензола реакционная способность падает от толуола к этилбензолу и далее тем больше, чем сложнее и разветвленнее алкильный радикал. [c.360]

    Радикальная сополимер гг зация диенов с виниловыми мономерами. Все сопряженные диены весьма активные мономеры в радикальной полимеризации. Бутадиен и изопрен близки по реакционной способности к стиролу, хлоропрен и нек-рые др. производные бутадиена значительно превосходят его. Поэтому при сополимеризации бутадиена и хлоропрена образующийся сополимер сильно обогащен хлоропреном по сравнению с его содержанием в исходной смеси мономеров. Возникающие при росте цепи радикалы аллильного типа стабилизируются за счет эффекта сопряжения, к-рый для аллильного радикала равен около 96 кдж/моль (23 ккал/моль). [c.347]

    Радикальная радиационная полимеризация. Этот процесс характеризуется теми же основными кинетич. закономерностями, что и радикальная полимеризация, инициируемая вещественными инициаторами. Хотя раз- личные мономеры по выходу радикалов и скорости, инициирования отличаются друг от друга, общая скорость Р. п. в значительной степени определяется соотношением между реакционной способностью мономера и соответствующего радикала. Радикальная Р. п. инги- бируется типичными ингибиторами радикальной полимеризации, напр, дифенилпикрилгидразилом, бензо-хиноном, кислородом. [c.125]

    Реакция карбоний-ионной сополимеризации. Как и в реакциях свободно радикальной сополимеризации, лучшим способом получить данные об относительных реакционных способностях мономеров при карбоний-ионной полимеризации является исследование состава сополимеров. Хотя сообщение, что изменение характера активного центра (переход от свободного радикала в ион карбония) может резко изменить состав сополимера, появилось в 1944 г. [99], уравнение сополимеризации не применялось к системам, содержащим ион карбония, до 1948 г., когда было показано [6], что реакция сополимеризации стирола и /г-хлорсти-рола в растворе СС1 , катализируемая ЗпС] , дает постоянные отношения реакционных способностей мономеров (г = 2,2—2,7, = 0,35), это резко отличается от результатов, получаемых при свободно-радикальной реакции (г = 0,74, Гз = 1,025). Впоследствии были опубликованы данные еще для ряда систем, которые подтвердили применимость уравнения во всех случаях, когда сополимер содержит достаточное количество обоих компонентов. На основании этих исследований выяснились два общих свойства реакций карбоний-ионной сополимеризации во-первых, карбо-ний-ионная сополимеризация не имеет тенденции к чередованию или же эта тенденция проявляется в незначительпой степени и, во-вторых, реакционные способности могут быть сведены в последовательные ряды с несколько более широкими пределами распространения, чем это наблюдается при реакции свободно-радикальной сополимеризации. Такие ряды показаны в табл. 11. [c.159]

    Какие превращения преобладают, зависит от вида олефина и его концентрации. Высокая концентрация четыреххлористого углерода подавляет реакцию полимеризации. При применении 100 кг-мол четыреххлористого углерода на 1 кг-мол олефина мо кио почти полностью прекратить полимеризацию, так как радикал по реакции III встречает слишком большой избыток четыреххлористого углерода. С другой стороны, октен-1 не обладает большой реакционной способностью к присоединению указанного типа, как этилен. Напротив, при применении четырехбромистого углерода ие требуется такого большого избытка для подавлеиия полимеризации. Для этого достаточно молярного соотношения четырехбромистого углерода к олефину 4 1 до 2 1 в зависимости от применяемого олефина. Это связано с тем, что атом брома гораздо легче отрывается от четырехбромистого углерода, чем атом хлора от четыреххлористого углерода. [c.584]

    Теория цепных процессов послужила главной внутринаучной предпосылкой также и для взаимосвязанных процессов развития химии и химической технологии синтетических полимеров. Были выяснены многочисленные закономерности, относящиеся к процессам полимеризации, начиная с количественного определения реакционной способности данного мономера и образовавшегося из него радикала и кончая рекомендациями по регулированию молекулярной массы получаемых полимеров. Установлен механизм инициирования реакций при различных способах генерирования радикалов, взаимодействия радикалов с молекулами мономера, растворителя, ингибиторов. Развита теория сополимеризации. Технологическим следствием работ в области цепной теории полимеризации явилась детальная разработка в 1938—1940-х годах процессов синтеза полиэтилена высокого давления, полистирола, поливинилового спирта, поливинилхлорида, полиакрнлатов, полиизобутилена, коренное [c.149]

    Доля таких структур, в общем, зависит от электронодонорной или электроноакцепторной способности радикала. Дополнительное подтверждение этой концепции имеется в работе Фурмана и Месробиана [105], посвященной определению констант передачи цепи через СВг4 радикалами, полученными из различных мономеров. Авторы применяли к своим данным О — е-схему Алфрея и Прайса (см. гл. 5) и достигли некоторых успехов в предсказании относительных реакционных способностей исследованного ими ряда полимерных радикалов в реакции с СВг4. Бемфорд и Уайт [100] получили дополнительное подтверждение большого значения ионных резонансных форм в переходном состоянии для реакции передачи цепи. Они установили, что при полимеризации многих мономеров третичные амины активно участвуют в реакции передачи, в результате чего осколки основания входят в полимерные цепи. Принимая за единицу константы передачи цепи через толуол при полимеризации этих же мономеров, Бемфорд и Уайт смогли вычислить относительные реакционные способности триэтиламина и четырехбромистого углерода и на основании полученных данных сделали вывод, что реакция передачи цепи через амин идет следующим образом  [c.273]

    При этом возникает новый радикал Х. Если соединение ХН должно играть роль терминатора, то оно подбирается с таким расчетом, чтобы этот радикал обладал низкой реакционной способностью и не мог инициировать образование новой цепи. Если же соединение ХН предназначается в качестве агента переноса цепи, то его подбирают так, чтобы образующийся радикал X обладал достаточно высокой реакционной способностью и мог инициировать новую цепь при этом длину отдельных цепей (т. е. молекулярный вес полимера) можно регулировать, не снижая общей скорости полимеризации. В качестве агентов второго типа часто используют тиолы RSH, которые могут обра- [c.294]

    При выводе кинетических соотношений обычно делаются следующие четыре допущения. 1. Рассматривается случай, когда полимеризация протекает с длинными цепями, т. е. скорость полимеризации v v так что v, можно не принимать во внимание. 2. Допускается, что к и к, не зависят от длины реагирующего макрорадикала, т. е. Кру = кр2 =. .. = кр , и то же для kt и ktd- Такое предположение представляется разумным, особенно для высокомолекулярных радикалов, так как реакционная способность радикала определяется его молекулярной структурой вблизи свободной валентности, а при гомополимеризации строение всех макрорадикалов одинаково и различаются они только своей длиной. 3. Предполагается протекание реакции в квазистационарном режиме. Это справедливо для экспериментов с v, = onst и длительностью t tr, xr = = (2A,v,-) V2. При V, = 10 +10 6 моль/л и 2к, = 10 +10 Ммоль с) время жизни макрорадикалов R- изменяется в интервале 0,1-10 с, что значительно короче периода прогревания реактора (50-200 с). 4. Обычно пренебрегают обрывом с участием первичных радикалов, образующихся из инициатора (этой реакции г. + R нет в схеме), поскольку в большинстве случаев практически все г реагируют с мономером, а доля г , реагирую- [c.357]

    Различные радикалы присоединяются [уравнение (9)] к алкенам, диенам, ароматическим соединениям, алкинам и к другим соединениям с ненасыщенными связями [26]. Стадия присоединения в реакциях с алкенами обычно является частью цепного процесса [схема (21)], приводящего к образованию аддуктов 1 1 (24), теломеров, например (25), или высокомолекулярных соединений. Едва ли нужно говорить о важности процессов радикальной полимеризации, но и образование аддуктов 1 1 также является важной синтетической реакцией [27], применимой к широкому кругу аддендов, например к полигалогенметанам, карбоновым кислотам, эфирам, нитрилам, спиртам, аминам и разнообразным радикалам с радикальным центром на гетероатоме. Преимущественное образование при реакции аддуктов 1 1 либо полимеров определяет конкуренция между стадиями (б) и (в) на схеме (21), и хотя это в большой степени зависит от природы реагирующих веществ, все же изменение условий реакции позволяет в значительной мере контролировать направление процесса. Алкены, образующие стабилизованные радикалы (23), которые ведут цепь, дают преимущественно полимеры. Например, стирол (22, К = РЬ) легко присоединяет радикалы, однако образующийся при этом резонансно стабилизованный радикал на стадии переноса цепи [стадия (б)] имеет низкую реакционную способность и реагирует предпочтительно с другой молекулой стирола. Такие алкены образуют главным образом полимеры, за исключением тех случаев, когда в адденде имеется достаточно слабая связь, чтобы стадия переноса (б) могла конкурировать со стадией дальнейшего присоединения (в). Наоборот, менее стабилизованные ведущие цепь радикалы генерированные из таких алкенов, как, например, (22, К = А1к), обладают [c.579]

    А. Д. Абкин [20] с этих же позиций рассмотрел явления совместной полимеризации. Скорость совместной полимеризации и состав образующегося сополимера дают возможность вычислить константы скорости реакции того или иного радикала но отношению к той или иной мономерной молекуле. На основе констант скоростей взаимодействия молекул данной природы с радикалами различного химического строения и радикалов данного химического строения с молекулами различной природы были составлены ряды реакционной снособности радикалов. Активность последних возрастает в ряду стирол, бутадиен, метилметакрилат, вннилцианид, метилакрилат, винилацетат. X. С. Багдасарьян [19] показал, что наиболее активные радикалы образуются из наименее активных мономеров. Следовательно, ряд реакционной способности мономеров антибатен ряду активности радикалов. Иначе говоря, чем легче реагирует с различными радикалами молекула, т. е. чем она активнее, тем труднее реагирует получаемый из этой молекулы путем разрыва двойной связи соответствующий радикал, т. е. тем он менее активен, и, наоборот, чем менее активна молекула (чем труднее она реагирует), тем более активным оказывается радикал, получаемый из нее путем разрыва двойной связи. [c.80]

    Свободные радикалы — частицы с очень высокой реакционной способностью, и присутствие в реакционной смеси небольших количеств иных веществ кроме инициатора и мономера может резко изменить ход полимеризации. Для получения полимеров с большой молекулярной массой необходимо использовать тщательно очищенные мономеры. Влияние примесей может осуществляться по двум основным направлениям. Примером первого из них служит полимеризация стирола в присутствии небольшого количества тетрахлорида углерода. Полимеризация происходит с такой же скоростью, что и в отсутствие ССЦ, но образующийся полистирол имеет меньшую среднюю молекулярную массу и содержит следы хлора. Это обусловлено явлением передачи цепи , когда обрыв цепи приводит к образованию радикала, способного инициировать цепную полимеризацию находящегося в системе мономера (схемы 10, 11). Число растущих цепей и, следовательно, скорость полимеризации не изменяются, но число элементарных актов на стадии роста цепи до ее обрыва уменьшается. Особенно важен тот случай, когда сами макромолекулы выступают в роли передатчиков цепн. Это приводит к появлению разветвлении (схема 12), причем образующиеся боковые цепн могут быть очень длинными. В тех случаях, когда растущий радикал атакует свою собственную цепь (схема 13), образуются более короткие боковые цепи. Типичными агентами передачи цепи являются тетрахлорид углерода, толуол и тиолы. [c.303]

    Если реакционная способность новых радикалов, возникших при передаче цепи, мало отличается ог активности первоначальных, то передача цепи не окажет существенного влияния на скоросгь полимеризации, но вызовет снижение молекулярной массы полимера из-за более раннею обрыва цепи растущею радикала [c.105]

    Как отмечалось выше, свободно-радикальная полимериза--ция виниловых соединений отличается от классической цепной реакции тем, что реакционноспособные промежуточные продукты радикальной природы хотя и являются соединениями одного и того же типа (все они представляют собой органические радикалы, построенные из одних и тех же структурных единиц), но содержат различное количество этих единиц в зависимости от числа актов роста, в которых участвовал данный первичный радикал. При кинетической обработке необходимо учитывать реакции радикалов всех размеров было сделано допущение, что реакционная способность радикала данного типа не зависит от длины цепи, поэтому, например, одна константа скорости может характеризовать все акты роста, происходящие при полимеризации данного мономера. Очевидно, что принятие этого допущения значительно упрош,ает расчеты. Вопрос о справедливости этого предположения был предметом многих теоретических работ уже в то время, когда методы кинетической трактовки полимеризации только начинали разрабатывагься окончательным подтверждением правильности этого допущения является хорошее совпадение уравнений, выведенных на его основе, с экспериментальными данными. (Как будет показано, некоторые уравнения могут быть выведены без учета этого допущения, по они, как правило, не могут быть проверены экспериментально.) Были сделаны попытки проверить эту гипотезу экспериментально другими методами [15—17], но не все эти попытки привели к однозначным результатам. [c.22]

    Примеры вывода других функций и обработки других реакционных схем можно найти в статье Джи и Мелвила [21]. Отметим, что применение этого метода обработки позволяет заменить эмпирическое допущение о независимости индивидуальных констант скоростей от длины радикала более правдоподобным допущением, согласно которому относительная реакционная способность радикала данного типа в различных реакциях не зависит от длины цепи радикала. Общая обработка схемы виниловой полимеризации, в которой не сделано никаких допущений о характере зависимости константы скорости от размера радикала, очевидно, не позволяет получить уравнения, удобные для экспериментальной проверки [уравнение (1.19)]. [c.36]

    Исходя из наблюдений, о которых речь шла выше, был предложен механизм гетерогенной полимеризации, основанный, в первую очередь на предположении о том, что многие (если не все) полимерные радикалы в процессе роста отделяются от жидкой фазы. Из обших закономерностей поведения полимерных молекул в окружении молекул осадителя можно было бы ожидать, что такие отделившиеся радикалы свернуты в плотный клубок. Реакционная способность отдельного радикала такого типа будет пониженной, так как существует большая вероятность того, что конец радикала окажется окклюдированным в клубке, однако возможно и множество конфигураций, при которых активный конец будет способен реагировать с другими реагентами, в том числе и с другими радикалами. Средняя величина реакционной способности будет также уменьшаться вследствие коалесценции радикала с частицами неактивного полимера. Относительное влияние каждого из этих факторов на кинетику зависит от конкретной системы. Если полимер способен набухать, то роль свертывания в клубок может быть незначительной в случае же ненабухающего полимера, особенно высокомолекулярного, значение образования клубков возрастает, но, по-видимому, коалесцепция всегда играет главную роль. Степень окклюзии, от которой зависит доступность радикалов, нельзя определить точно, но очевидно, что она должна характеризовать величину полимерного барьера, препятствующего проникновению реагента к радикальному концу. [c.137]

    Абсолютные константы скоростей реакций стирольного и акрилонитрильного радикалов с РеС1з при 60° в растворе Ы,М-диметилформамида, вычисленные при помощи известных констант скоростей роста для этих радикалов, равны 94100 и 6533 моль- - л-сек соответственно. Общая реакционная способность полистирольного радикала, характеризуемая константой скорости реакции передачи цепи через толуол (см. стр. 118), почти в 200 раз меньше реакционной способности полиакрнлонитрильного радикала, оцененной аналогичным способом. Отсюда следует, что в реакциях с РеС1з определяющим фактором служит не общая реакционная способность, а какая-то другая величина. Наиболее вероятно, что этой величиной является электронодонорная способность радикала, которая в случае акрилонитрила сравнительно мала. Можно представить, что в переходном состоянии электрон радикала поделен между реагентами [37]. Бартлет и Кворт [117] для объяснения действия различных замедлителей на полимеризацию винилацетата применяли реакционную схему (б.ХХХУ ), в основу которой положено допущение о стационарном состоянии. По данным этих авторов, величина к 1кр при 45° лежит в пределах 20—200. [c.287]

    Стерические факторы и стабилизация радикалов в результате сопряжения определяют течение и скорости реакций полимеризации, так что многие из приведенных выше соображений применимы и для этих реакций [3]. Например, более высокая реакционная способность метилакрилатного полимерного радикала по сравнению с метилметакрилатным ясно видна при сравнении полученных из данных по сополимеризации констант скоростей присоединения одного и того же мономера к обоим радикалам. Значения, найденные для метилакрилатного радикала, примерно в 10 раз больше значений, полученных для метилметакрилатного радикала [4]. [c.15]

    Рост цепи происходит в результате присоединения очередной молекулы мономера к аллилкарбинильному радикалу (R ), что приводит к регенерации радикала циклопроиилкарбинильного типа (R j ). Процесс полимеризации состоит из чередования актов присоединения мономера и изомеризации концевого звена. Наличие в цикле заместителя X, способного стабилизировать радикал К , приводит к образованию полимерной цепи, содержащей только линейные ненасыщенные звенья [—СН=СН—СНг—СНХ—СНз—] , где X — сложноэфирная или амидная группа. Эти же заместители обусловливают повышенную реакционную способность двойной связи в алкенилциклоиропанах, что объясняется существованием цепи сопряжения карбонильная группа — цикл — двойная связь. [c.403]

    Сравним действие одного и того же ингибитора при полимеризации двух мономеров, резко различающихся по своей реакционной способности, напр, винилацетата и стирола. Константа для первого мономера будет значительно больше (на несколько порядков), чем для второго мономера, т. к. иоливинилацетатный радикал гораздо более активен в полимеризации, чем иолисти-рольный. Коэфф. а также больше для винилацетата, т. к. вероятность регенерации цепи меньше при полимеризации менее реакционноспособного мономера (вииилаце-тата). Т. о., одно и то же соединение м. б. эффективным ингибитором таких мономеров, как этилен, винилацетат или винилхлорид, и в то же время быть слабым ингибитором или даже передатчиком цепи (а=0) при полимеризации, напр., стирола. [c.416]


Смотреть страницы где упоминается термин Радикалы реакционная способность при полимеризации: [c.144]    [c.17]    [c.404]    [c.190]    [c.110]    [c.176]    [c.262]    [c.275]    [c.252]    [c.54]    [c.149]    [c.226]    [c.288]   
Введение в электронную теорию органических реакций (1965) -- [ c.557 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация реакционная способность радикало

Полимеризация способность к полимеризации

Реакционная способность радикало

способность к полимеризации



© 2024 chem21.info Реклама на сайте