Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свободные радикалы, теплоты

    Радикализация молекулы стабильной ромбической серы под воздействием теплоты или свободного радикала ускорителя вулканизации [c.440]

    При замене атомов водорода в этане фенильными группами прочность этановой С—С-связи понижается. Незамещенный этан в обычных условиях по этой связи не расщепляется, так как для этого требуется затратить 79,5 ккал/моль. На разрыв этановой С—С-связи в молекуле дифенилэтана требуется уже меньше энергии, хотя устойчивость свободного бензила относительно невелика. Этановая С—С-связь разрывается тем легче и образующийся свободный радикал тем устойчивее, чем больше около этих углеродных атомов фенильных групп. Теплота диссоциации гексафенилэтана, как указывалось ранее, примерно равна 10—11 ккал/моль. [c.839]


    Большой интерес представляют теплоты образования свободных радикалов, непосредственно связанные с энергиями диссоциации связей. Если соединение А—В диссоциирует на два свободных радикала по реакции [c.225]

    Io данным Мюллера, теплота реакции равна около, 56 ккал/моль. Существование бирадикальной формы этого сое-инения подтверждает правильность определения (Кун, Кап, >ранке) свободного радикала как соединения, содержащего скомпенсированный электрон. Условие нечетности числа электро-ов в свободном радикале не обязательно. [c.147]

    Напрашивается вывод, что при 77° К на поверхности указанной смеси происходит хемосорбция водорода, тогда как она не происходит ни на одном из компонентов в отдельности. Этот экспериментальный результат является поразительным доказательством чувствительности процессов хемосорбции к электронному состоянию поверхности. Присутствие свободного радикала, растворенного в окиси цинка, вызывает перенос электронов через грани, что приводит к чрезвычайному увеличению хемосорбции водорода. Теплоты хемосорбции претерпевают замечательное изменение. Это явление должно быть связано с изменениями в электронном равновесии на поверхности, вызываемыми добавками или даже адсорбцией одного из реагирующих газов. [c.16]

    Теплоты диссоциации молекулярных соединений рассматриваются в гл. 6, первой из четырех глав, в которых идет речь о величинах теплот диссоциации, полученных на основании калориметрических данных. Глава 7 посвящена теплотам диссоциации органических молекул (одним из продуктов диссоциации таких молекул является свободный радикал), а также способам использования получаемых значений теплот образования радикалов для вычисления других энергий диссоциации по калориметрическим данным. В гл. 8 ранее вычисленные теплоты образования алкил- и арил-радикалов используются в свою очередь для вычисления энергий диссоциации связей металл — углерод в металлоорганических соединениях. Наконец, в гл. 9 дается обзор энергий диссоциации органических кислот и оснований в водных растворах. [c.26]

    Распад молекул на атомы и свободные радикалы требует большой затраты энергии, сравнимой с энергией диссоциации разрываемой связи. Если диссоциация молекулы происходит под действием теплоты, то реакцию зарождения цепи называют термической. Например, реакция термического распада (крекинга) этана начинается с мономолекулярного распада его на два радикала СаНб —> СНз + СНз.  [c.775]


    В состав ФПК входят, помимо основной органической составляющей, фотоинициатор и ингибитор. Фотоинициатор служит сенсибилизатором, который под действием УФ излучения приобретает избыточную энергию, возбуждается и обеспечивает образование свободных радикалов, необходимых для развития цепной химической реакции в основной органической составляющей. Ингибитор необходим для предотвращения спонтанных реакций, инициированных теплотой при хранении в период между введением фотоинициатора и непосредственным использованием, и для регулирования скорости фотолиза. Механизм действия ингибитора сводится к отдаче атома водорода его молекулой для насыщения свободной валентности активного радикала. Благодаря значительной вязкости ФПК обрыв органических цепей в результате взаимодействия радикалов протекает медленно. Это позволяет ингибитору оказать сдерживающее влияние [98]. [c.186]

    Экспериментально определенная теплота активации благоприятна для течения этих реакций. Энергии активации для различных превращений, связанных со свободными радикалами, приведены в табл. 194. Предполагается, что радикал СН=СН может участвовать в реакциях дегидрогенизации, напри- [c.614]

    Однако центральная связь О—О в перекиси водорода и ее аналогах сравнительно слаба (энергия связи не более 66 ккал 3) и поэтому соединения этого ряда могут довольно легко расщепляться фотохимически, под действием света с длиной волны меньше 3000 А, или каталитически, с образованием радикалов Н — 0- + R — 0-. Эти радикалы обладают гораздо меньшей свободной энергией, чем перекисные радикалы со структурой R — О — О , образующиеся при разрыве прочных связей О—Н (110 ккал) или О—С( 87 ккал) или при активации молекулы кислорода (теплота образования 116 ккал). Поэтому вполне можно ожидать, что гидроксильный радикал должен вести себя совершенно иначе, чем перекисный. [c.268]

    Удобным методом, позволяющим идентифицировать свободные радикалы, определять их концентрацию, изучать теплоту образования, потенциалы ионизации, энергии разрыва связей, является масс-спектрометрия. С помощью масс-спектрометрии можно изучать кинетику рекомбинации радикалов. Особенно эффективен этот метод для идентификации радикалов в газовой фазе. Важным преимуществом масс-спектрометрии является возможность анализа всех компонентов исследуемой системы одновременно. Однако с помощью только масс-спектрометрического метода нельзя отличить молекулу от радикала без учета различий в потенциалах появления. [c.11]

    Как мы видим, эти величины близки друг к другу, но заметно отличаются от той, которая получена путем кинетических измерений. В основе этого различия могут лежать две причины. Во-первых, не исключено, что при распаде гидроперекиси циклогексила диссоциация 0 0-связи не является стадией, лимитирующей скорость процесса. Это может быть, например, следствием того, что распад гидроперекиси частично протекает как цепная реакция. Во-вторых, может сказываться межмолекулярное взаимодействие в жидкой фазе. При одной и той же температуре энергия диссоциации в газовой и жидкой фазах должна отличаться на разность теплот растворения исходного вещества и свободных радикалов, на которые оно распадается. Для случая гидроперекиси, одним из продуктов распада которой является сильно полярный гидроксильный радикал, следует ожидать, что теплота растворения продуктов распада будет выше, чем теплота растворения исходного вещества. Следствием этого явится уменьшение энергии диссоциации О—О-связи. В настоящее время трудно сделать строго обоснованный выбор в пользу того или другого объяснения. [c.230]

    Джонстон и Бертин рассчитали энтальпию образования фтористого нитрозила и нашли ее равной —15,8 ккал/моль, а теплоту диссоциации на N0 и F 55,4 ккал/моль. Было высказано предположение, что радикал N0 в NOF менее устойчив (на 9 ккал), чем в свободном виде [c.416]

    Термодинамическая вероятность протекания химической реакции определяется величиной изменения в процессе свободной энергии Гиббса. Необходимым условием протекания реакции деструкции является отрицательное значение энергии Гиббса. Термические реакции протекают по радикальному механизму как цепные, так и не цепные. Вероятность протекания ионных реакций незначительная. Так, гетеролитичес-кий распад, например, связи С-С происходит с затратой энергии 1206 против 360 кДж/моль для гомолитического распада. Согласно радикально-цепной теории, при первичной стадии термического распада парафиновых углеводородов образуются два свободных радикала, которые могут дать начало реакционным цепям. Направление распада молекулы парафинового углеводорода на радикалы зависит от величины энергий связей, которые характеризуются теплотой их образования. [c.127]


    Колориметрические измерения. Пиккар в 1911 г. показал, что степень диссоциации бесцветного гексафенилэтана на желтый трифенилметил можно оценить колориметрически. Он установил, что степень диссоциации увеличивается при разбавлении. Циглер и Эвальд2 разработали этот метод и смогли определить, с точностью до 5%, константы и теплоты диссоциации гексафенилэтана и некоторых его производных. Они сконструировали прибор для приготовления и разбавления растворов гексафенилэтана при полном отсутствии воздуха и измерили спектрофотометрически их коэфициенты экстинкции для света с длинами волн, соответствующими характеристическим полосам поглощения свободного радикала. Для гексафенилэтана в бензоле они, получили согласующиеся значения константы диссоциации [c.63]

    По обоим методам (реакция с кислородом и окисью азота) энергия активации диссоциации гексафенилэтана оказалась равной 19 ккал (+1%). Циглер обратил внимание на тот факт, что энергия активации, требуемая для разрыва центральной связи С — С в гексафенилэтане, значительно больше теплоты диссоциации (ДЯ), которая составляет только 11 ккал (4 1%). Он указал, что у свободного радикала трифенилметила в растворе энергия, повидимому, на 3—4 ккал меньше, чем в момент образования. Вычисления Конанта показывают, что в ряду диксантила энергии активации (Е) также отличаются от теплот диссоциации ( А Я), но, к сожалению, его значения Д// основаны на весьма сомнительных теоретических предположениях [c.67]

    Недавно было найдено что теплота образования тетрафторгидразина АЯ25 lN2F4 (г)]= —2,0 2,5 ккал1моль. Теплота диссоциации, как теперь установлено с достаточной точностью, 19,8 0,8 ккал/моль. Эти два значения приводят к теплоте образования свободного радикала дифторамина, равной 8,9 2,5 ккал моль. [c.29]

    Возникновение высокомолекулярных продуктов деструкции связано с передачей цени начальным радикалом. Начальный радикал может быть стабилизован путем отрыва водорода от а-метиленовой группы другой молекулы (межмолекулярная передача) илн от удаленного участка той же молекулы (внутримолекулярная передача). При этом положение образующегося свободного радикала случайно но отношению к начальному. Если процессы передачи цепи значительно преобладают над деполимеризацией, то термическая деструкция эластомера протекает по закону случая, и продукт реакции представляет собой набор молекул всех промежуточных размеров, а количество летучих невелико. Такой процесс характерен для термической деструкции насыщенных эластомеров, например этнлениропиленового каучука. Установлено, что мономер выделяется тем интенсивнее, чем нилсе теплота полимеризации эластомера. [c.145]

    Свободный радикал, участвующий в реакции (12), рекомбинирует далее со свободным радикалом, участвующим в реакции (13) в результате чего возникает поперечная связь. Такая последовательность реакций удовлетворительно согласуется с данными эксперимента, поскольку она объясняет переход большого количестве энергии нейтрализации в теплоту без разрыва цепей и образование двух свободных радикалов, совместно участвующих в реакции Длина С-—С-связи составляет 1,54 А, а наименьшее расстояние между парами атомов углерода в С—С-связи, каждая из которые принадлежит разным цепям в кристалле полиэтилена, составляет примерно 4,6 А. Отсюда нетрудно увидеть, как важно рассмотрет механизм, посредством которого атомы углерода, принадлежащие разным цепям, в твердом полимере подходят друг к другу достаточно близко, чтобы образовалась ковалентная связь. Более того, в любой ион-молекулярной реакции продукт представляет собор еще и ион, который должен в конце концов нейтрализоваться, а энергия нейтрализации этого иона должна перейти в теплоту. [c.392]

    Для свободных радикалов, если не считать таких стабильных радикалов, как N0, ЫОг, СЮг и ЫРг, имеется очень мало прямых термохимических данных. Почти все наиболее достоверные значения теплот образования получены из кинетических измерений энергий диссоциации связей, в то время как энтропии и теплоемкости можно вычислить лишь с помощью статистических методов. Все это является- причиной ограниченности тех сведений, которые имеются по термохимии свободных радикалов. Теплоты образования обычно определены с погрешностью ккал/моль, а часто со значительно худшей точностью. Однако молено ожидать, что правила аддитивности свойств групп применимы и к радикалам, и поэтому можно вывести для любого алкильного радикала, если известна соответствующая величина для СН3СН2, (СНз)2СН и (СНз)зС. Энтропии радикалов могут быть рассчитаны на основе аддитивности свойств групп из энтропий простейщих радикалов, однако для последних энтропии должны быть вычислены исходя из предполагаемых структур радикалов и частот колебаний. Хотя есть основания полагать, что замещенные метильные радикалы плоские и поэтому имеют более высокую симметрию, чем неплоские радикалы, все же оценки, которые можно сделать для радикалов, характеризуются некоторой неопределенностью. При рассмотрении электронной вырождениости, как и ранее, мы будем учитывать только спиновую вырожденность, т. е. мультиплетность, и для радикалов, имеющих один неспаренный электрон, [c.65]

    Поскольку в производных бензола резонансный интеграл а равен приблизительно 34 л, энергия, стабилизирующая радикал фенилметила за счет резонанса между тремя структурами С, В и Е, составит, таким образом, около 18 ккал/моль. Энергия, потребная для разрыва связи С—С, равна примерно 70 клал, и отсюда теплота диссоциации смлж.-дифенилэтана определится как разность между 70 ккал и резонансной энергией двух возникающих свободных радикалов фенилметила. Следовательно, энергия диссоциации должна быть около 34 ккал/моль. Таким образом, тенденция дифенилэтана диссоциировать на два свободных радикала невелика. С другой стороны, проведенные описанным выше способом вычисления показывают, что энергия резонанса свободного радикала трифенилметила выражается величиной 1,108а, которая равна около 38 ккал. В этом радикале непарный электрон может резонировать между девятью положениями, из которых каждые три входят в одну фенильную группу, в результате чего стабилизирующая энергия в этом случае будет значительно больше, чем для радикала фенилметила. Таким образом, резонансная энергия двух радикалов трифенилметила, достигая 76 ккал, окажется по порядку величины близкой к значению энергии диссоциации связи С—С. Из этого следует, что гексафенилэтап должен легко диссоциировать на свободные радикалы, как это и подтверждается экспериментом. [c.175]

    Очевидно, что элементарная реакция ингибирования в принципе не отличается от других экзотермических реакций образования радикалов. Но если в этой элементарной реакции освобождающаяся теплота реакции играет такую решающую роль, то трудно было бы представить, что в аналогичных элементарных реакциях не нужно считаться с подобными же следствиями. Именно поэтому представляется общим правилом, что всякая экзотермическая реакция, в которой образуется активный центр, приводит к образованию горячих частиц. Легко заметить, что с этой точки зрения химическая природа активного центра (свободный радикал, карбонпевый ион и карбанион) безразлична. Весьма вероятно, что этот эффект может играть особенно важную роль именно в тех процессах, в механизме которых эти реакционные ступени постоянно повторяются, т. е. в цепных реакциях радикального или ионного характера. Для проявления эффекта горячих радикалов требуются также и другие условия. Последние частично изложены уже раньше. [c.91]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]

    Теплоты образования ион-радикалов можно также определить прямыми измерениями потенциала ионизации соответствующего свободного радикала, образованного путем пиролиза или фотолиза подходящего соединения с насыщенными валентными связями. Этот метод широко применял Лоссинг [6]. При этом, однако, необходимо знать теплоту образования радикала. В монографии [5а] имеется обзор последних работ в этой области, составленный Харрисоном. [c.56]

    Такое полимеризационно-деполимеризационное равновесие, как любое термодинамическое равновесие, подчиняется уравнению изотермы реакции Л0= ДС -Ь/ Пп АГ, а К — к поскольку (R-I = [RM ]. Отсюда следует, что для любой концентрации мономера существует 7 , выше которой преобладает деполимеризация, а АЯ° (Д5 4 -Ь/ 1п 1М))- где ДЯ" и Д5 — разность стандартных энтальпий и энтропий образования мономера и полимера при Т , М — концентрация мономера в жидком состоянии. Чаще всего деполимеризация идет через свободные макрорадикалы, и необходимое условие деполимеризации — генерирование свободных радикалов и возникновение мак-рорадииалов со свободной валентностью на конце. Параллельно с деполимеризацией идут другие процессы передача цепи на полимер, отщепление боковой группы, рекомбинация и диспропорционирование двух макрорадикалов. Константа скорости отщепления мономера от концевого радикала к = ,, + q, где — энергия активации присоединения мономера к макрорадикалу д — теплота присоединения мономера к макрорадикалу q 90 кДж/моль (винилацетат) 78 (метилакрилат) 70 (стирол) 58 (метилметакрилат), 35 кДж/моль (а-метилстирол). С высоким выходом мономера деполиме-ризуются полиметилметакрилат, поли-а-метилстирол, полиметакрио-лонитрил, поливинилиденцианид, полистирол. Для чистого мономера [c.287]

    Простейшими из органических радикалов являются легил (СНз) и метилен ( Hj). Первый может быть получен, например, термическим разложением тетраметилсБинца, протекающим по схеме РЬ(СНз)< = РЬ + 4СНз. По отношению к свободным элементам он сильно эндотермичен (теплота образования — 35 ккал/моль). Несмотря на наличие свободного электрона, радикал метил имеет плоское строение [тогда как радикал U—пирамидальное с d( I) = 1,74 А и zi i I = 109,5°]. Его потенциал ионизации равен 9,8 в, а время самостоятельного существования составляет тысячные доли секунды, после чего, при отсутствии других возможностей, происходит димеризации с образованием этана. [c.547]

    Радикал метилен (иначе—карбен) образуется, в частности, при термическом разложении диазометана ( 1 доп. 137). По отношению к свободным элементам он сильно эндотермичен (теплота образования —92 ккал/моль), но способен самостоятельно существовать гораздо дольше метила. Его ионизационный потенциал равен 10,4 в. Два свободных электрона метилена в основном состоянии не спарены, а в близко лежащем (0,6 эб) возбужденном — спарены. Для первого из них дается линейная структура [d( H) = 1,03 А], для второго — угловая [d( H) = 1,12 А, ZH H = = 103°]. [c.547]

    Если пиролиз метана протекает по радикальному нецепному механизму, то экспериментально найденные результат.ы кинетических измерений отображают результаты первичной стадии реакции. Этой стадией может быть разложение метана с образованием метильных или метиленовых свободных радикалов. Разложение с образованием метиленовых радикалов является эндотермическим с теплотой реакции 85 ккал1моль [49] и характеризуется активационным барьером 9 кк.ал1моль [50]. Поэтому, если пиролиз метана в условиях, существующих в ударней трубе, протекает по нецепному механизму, первичной стадией которого является разложение метана до свободного метиленового радикала, то вычисленная [37] энергья активации суммарной реакции, равная 93 ккал моль, должна совпадать с энергией активации разложения до метиленовых радикалов. Правда, разность между несколько большей энергией активации для разложения метана с образованием метильных радикалов и вычисленной величиной не превышает экспериментальной погрешности. [c.315]

    Значения АЯ для ряда свободных радикалов имеются в литературе [47]. Теплоту образования перекисного радикала можно рассчитать, используя выведенное соотношение [48] АЯеоон = АЯкон + 23 ккал1молъ и положив = 90 ккал моль (как в молекуле перекиси водорода)  [c.99]

    Видно, что теплота присоединения алкильного радикала к кислороду равна 20 + 2 ккал/молъ. Для аллильного и бензильного радикалов, у которых свободная валентность частично стабилизирована, теплота реакции значительно меньше (8—10 ккал/молъ). [c.99]

    Найденные значения энергии диссоциации ОН-связи в спиртах дают возможность определить теплоту образования любого алкоксильного радикала, используя которую по уравнению (УП1, 3) нетрудно найти и энергию диссоциации О—О-связи в соответствующей гидроперекиси. Теплота образования циклогексанола при 25° в газовой фазе составляет 71,8 ккал/моль. Теплота образования свободного циклогексо-ксильного радикала равна [c.229]

    Найденные выше значения теплот образования и энергий диссоциации связей позволяют получить ряд ценных сведений о свободном радикале СбНцО .При взаимодействии этого радикала с молекулой циклогексана происходит образование циклогексанола и циклогексильного радикала. При этом рвется связь СН в циклогексане и образуется ОН-связь в спирте. Тепловой эффект этой реакции положителен и равен разности энергий диссоциации этих связей <7=12 ккал/моль (здесь и в дальнейшем будем считать, что энергия диссоциации ОН-связи в спиртах равна в среднем 102 ккал/моль). Используя соотношение Поляни—Семенова, находим, что энергия активации этого процесса приблизительно составляет 8,5 ккал/моль, т. е. относительно невелика. Это говорит о довольно высокой реакционной способности радикала СеНцО . [c.230]

    Знание энергии диссоциации ОН-связи в гидроперекиси циклогексила позволяет найти теплоту образования свободного циклогексилпероксидного радикала. Величины теплот образования ряда свободных радикалов и энергии диссоциации связей сведены в табл. 25. Точность приведенных величин лежит, по-видимому, в пределах 3 ккал/моль. [c.233]

    Способ применения табл. 4 для вычисления теплот таких реакций, как приведенные в уравнении 33, самоочевиден. Так, для уравнения 33 АН = 103 ккал, тогда как при образовании свободного метильного радикала из этана поглощается 89,5 ккал1моль. [c.326]

    Примечание. ДНдд — значение теплоты образования радикала из свободных атомов, отнесенное к единице электростатической валентности.  [c.168]


Смотреть страницы где упоминается термин Свободные радикалы, теплоты: [c.262]    [c.72]    [c.71]    [c.20]    [c.162]    [c.12]    [c.108]    [c.60]    [c.450]    [c.450]    [c.17]    [c.33]    [c.222]    [c.407]    [c.41]   
Теплоты реакций и прочность связей (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Свободные радикалы

Свободные радикалы ион-радикалы

Свободные радикалы, теплоты образования

Теплоты образования свободных радикалов в жидкофазном окислении

Энергия диссоциации связей и теплота образования свободных радикалов



© 2025 chem21.info Реклама на сайте