Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектр аминокислотный тканей

    О нарушении обмена аминокислот в целостном организме судят не только по количественному и качественному составу продуктов их обмена в крови и моче, но и по уровню самих свободных аминокислот в биологических жидкостях организма. Большинство тканей характеризуется своеобразным аминокислотным спектром . В плазме крови он примерно соответствует аминокислотному составу свободных аминокислот в органах и тканях, за исключением более низкого содержания глутамата и аспартата и более высокого уровня глутамина, на долю которого приходится до 25% от общего количества аминокислот. Цереброспинальная жидкость отличается меньшим содержанием почти всех аминокислот, кроме глутамина. Аминокислотный состав мочи резко отличается от аминокислотного состава плазмы крови. Оказывается, у человека, получающего полноценное питание, аминокислотный состав мочи более или менее постоянен изо дня в день, но у разных людей с почти одинаковым аминокислотным составом плазмы состав аминокислот в моче может оказаться совершенно различным. [c.464]


    Аминоацидурия. Качественный и количественный состав аминокислот мочи человека имеет прежде всего диагностическое значение, поскольку некоторые болезни человека возникают вследствие первичного нарушения обмена отдельной аминокислоты или группы аминокислот. Кроме того, для ряда органических поражений органов и тканей человека, а также аномалий обмена характерен свой аминокислотный спектр мочи. Ввиду этого, а также благодаря легкой доступности объекта исследования анализ мочи на наличие аминокислот приобретает большое клиническое значение. На экскрецию аминокислот большое влияние оказывают возраст, характер питания, пол, гормоны и другие факторы. Установлено, что у младенцев с мочой вьщеляется больше аминокислот, чем у взрослых. Обычно различают повышенную и пониженную экскрецию аминокислот. В свою очередь гипераминоацидурия делится на почечную, связанную с приобретенными или врожденными дефектами реабсорбции аминокислот в почках, и внепочечную, обусловленную увеличением концентрации всех или отдельных аминокислот в крови (см. главу 18). [c.466]

    Часть свободных аминокислот попадает в кровь в процессе пищеварения, другая — эндогенная — часть образуется в результате распада белков тканей. В сыворотке содержание свободных аминокислот составляет 2,7—4,6 ммоль/л. Аминокислотный спектр сыворотки соответствует аминокислотному спектру свободных аминокислот в органах и тканях, за исключением более низкого содержания аспартата и глутамата и повышенного содержания аспарагина и глутамина (25%). Изменение содержания общего аминного азота в сыворотке и моче может служить одним из показателей превалирования катаболических или анаболических процессов в организме, сопровождающих ряд патологических состояний. [c.409]

    Хотя и было известно, что многие аминокислоты встречаются в природе в свободном состоянии, более детальные сведения о распространении свободных аминокислот получены лишь в последнее время. При помощи хроматографического метода [325], широко используемого в последние годы, оказалось возможным определить аминокислотные спектры или профили различных тканей по этому вопросу ежегодно публикуется множество исследований. Результаты, полученные с применением новейших методов, во многих случаях подтвердили данные, добытые ранее при помощи химических, ферментативных и микробиологических методов. Однако метод хроматографии позволяет с такой быстротой и удобством одновременно исследовать большое количество аминокислот, что он стал одним из главных приемов изучения аминокислот. [c.63]


    При помощи хроматографических и других методов получены детальные сведения о содержании свободных аминокислот в различных растительных и животных тканях. Много внимания было уделено аминокислотному составу плазмы крови [326], мочи [307], пота [327, 328] и спинномозговой жидкости [328]. В табл. 3 приведены цифры, характеризующие содержание аминокислот в некоторых тканях кошки, в плазме крови и моче человека и в клубнях картофеля. Многие ткани отличаются своеобразным спектром свободных аминокислот (см., например, [329—333]), наглядно выявляемым при двухмерной хроматографии на бумаге [168, 329, 334] (стр. 43). Метод Мура и Стайна (стр. 41), хотя он и более сложен, чем хроматография на бумаге, имеет большие преимущества, так как дает возможность получить точные количественные данные. [c.63]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Каково соотношение различных механизмов (генетических и негепетических) замен в аминокислотной носледовательности различных изоформ белков — это вопрос предстоящих исследований. Для нас важно, что независимо от механизма таких замен сама возможность изменения изоформ белков в зависимости от состояния рибосомального окружения (и, следовательно, от пролиферативной активности ткани) дает возможность понять некоторые молекулярные основы несущественных измене-ни11 белков, модифицирующих ряд характеристик (спектр нзоформ, антигенный спектр, термолабильность и т. д.). [c.103]

    Ренин расщепляет в молекуле ангиотензина связь между двумя остатками лейцина, освобождая декапептид ангиотензин-1. Затем ангиотензин-пре-вращаюший фермент (АПФ) отщепляет еще два аминокислотных остатка, превращая его в активный ангиотензин-П. Пептиды группы ангиотензина участвуют в регуляции не только уровня артериального давления и сопряженных процессов почечной фильтрации и водно-солевого обмена, но также и в репродуктивной функции, многих процессах генерализованного характера (стресс, алкогольная мотивация, агрессивное поведение). Ангиотензин участвует в синтезе или выбросе в кровь ряда других физиологически активных соединений - гормонов, низкомолекулярных медиаторов (катехоламины, серотонин), чем в значительной мере объясняется широкий спектр физиологических функций этих субстанций. Исследования последнего времени уделяют внимание молекулярным аспектам рецепторов ангиотензина II. Физиологические эффекты ангиотензина II (АНГ-П) осуществляются при участии рецепторов АТ1 и АТ2. Их тканевая локализация (в регионах мозга и периферических тканях) определяют особенности физиологических реакций А-П и его функциональное взаимодействие с другими пептидами. Распределение АТ1 и АТ2 типов рецепторов АНГ-П в отделах мозга человека оказывается отличным от такового для других млекопитающих. [c.328]

    В высокоочищенном состоянии КФ получена из скелетных мышц [20, 23, 35], сердца [36, 37, 38] и печени 1[39—42], а в частично очищенном виде она выделена из ряда других тканей. В качестве объектов для выделения фермента были использованы ткани кролика, акулы, крысы, быка, а также человека. Разработанный Кребсом и др. [35] метод выделения КФ основан на изо-электрическом осаждении и дифференциальном центрифугировании. Дополнительные этапы очистки включают осаждение сульфатом аммония, гель-хроматографию на сефарозе 4В и ионнообменную хроматографию на ДЭАЭЦ [20, 23]. Описаны и другие методы выделения—с помощью гидрофобной хроматографии [43], хроматографии по сродству на иммобилизованной фосфорилазе, специфических антителах, на кальмодулин-сефарозе [44—46]. Очищенная до гомогенного состояния КФ из скелетных мышц представляет собой большую молекулу с м. в. 1,27x10 —1,33X10 [20, 23, 35 Коэффициент седиментации ее равен 23—26 5 [20, 23, 47, 48 При хранении фермента появляются агрегаты с коэффициентами седиментации 37 5 и 485 [23]. В двух разных лабораториях был определен аминокислотный состав молекулы КФ [20, 23]. Изо-электрическая точка фермента р1 равна 5,77 [21]. В спектре поглощения имеется максимум при 279 нм и минимум при 251 нм [21]. [c.56]



Смотреть страницы где упоминается термин Спектр аминокислотный тканей: [c.328]    [c.210]    [c.328]   
Биологическая химия Изд.3 (1998) -- [ c.464 ]




ПОИСК







© 2024 chem21.info Реклама на сайте