Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты защитные группы

    Способы защиты боковых цепей различных аминокислот не обсуждаются в настоящей книге, поскольку они подробно описаны в учебниках и монографиях (см, цитируемую литературу). Более важным представляется знакомство с химическими основами методов блокирования амино- и карбоксигрупп, что позволяет сделать выводы о принципах блокирования боковых цепей. Часто для этого используются одни и те же или весьма похожие защитные группы, В качестве примера рассмотрим блокирование тиогруппы цистеина и аминогрупп орнитина и лизина, [c.78]


    Сущность матричного синтеза заключается в следующем. Полимер П — X реагирует с избытком аминокислоты А], снабженной защитной группой з  [c.191]

    Эту группу можно использовать в качестве ацильной защитной группы, которая удаляется при мягкой щелочной обработке. Ее можно ввести обработкой аминокислоты трифторуксусным ангидридом или тиоэтиловым эфиром трифтор-уксусной кислоты  [c.76]

    Поскольку каждая аминокислота присоединяется поочередно, при химическом синтезе белков очень важен выход на каждой стадии. Вновь обращаясь к синтезу Gly-Ala, отметим, что, если синтез пептидной связи прошел на 90%, такой синтез может считаться удовлетворительным. Однако, если те же условия использованы для синтеза декапептида грамицидина S, то общий выход составит 0,9 X 100% = 35%. При этом не учитываются потери при введении и снятии защитных групп. Следовательно, при синтезе белковых макромолекул образование пептидной связи должно проходить с высоким выходом. [c.68]

    Как недостаток этой защитной группировки следует отметить, что трифтор-ацетильные производные аминокислот легко рацемизуются. Защита удаляется обработкой гидроксидом натрия при комнатной температуре в этих условиях больщинство остальных защитных групп не затрагивается. [c.76]

    Следует учитывать и другой фактор, присущий исключительно биологическим системам,— оптическую чистоту. Белки состоят из L-аминокислот. Поэтому при химическом синтезе следует исходить из L-аминокислот, а в процессе синтеза рацемизация должна быть сведена к минимуму. В наибольшей степени это относится к синтезу ферментов, каталитическая активность которых зависит от оптической чистоты. Аминокислоты особенно легко подвергаются рацемизации, когда они ацилированы (т. е. когда аминогруппа блокирована ацильной группировкой) через промежуточное образование азлактона. Такое превращение может произойти, например, в процессе введения защитной группы или в процессе образования пептидной связи  [c.68]

    Аминокислота (/1), аминогруппа которой замещена группировкой (У), конденсируется с другой аминокислотой (Б), имеющей защищенную остатком V карбоксильную группу. После того как получен полностью защищенный пептид (В), либо удаляют сразу обе защитные группы и получают свободный пептид (Г), либо проводят избирательное удаление одной из групп У или У. Образующийся в последнем случае замещенный пептид (Д) или ( ) может быть использован для дальнейших синтезов. [c.385]

    Карбобензоксигруппу можно удалить гидрогенолизом. Обработка -безводной трифторуксусной кислотой приводит к удалению обеих защитных групп и образованию оптически чистой -аминокислоты. [c.679]


    Ограниченное значение как защитная группа имеет трифторацетильная группа, обычно вводимая в аминокислоты. и амины с помош >ю тиоэфира трифторуксусной кислоты. [c.1649]

    После удаления Ы-защитной группы наращивание полипептидной цепи проводят стандартными методами пептидного синтеза в р-ре (см. Пептиды). В качестве конденсирующих агентов наиб, часто используют карбодиимиды или предварительно превращают аминокислоты в активир, эфиры. При синтезе олигонуклеотидов в качестве Н, используют макропористые стекла или силикагель. Якорной группой служит карбоксильная группа, отделенная от пов-стн Н. спец, ножкой , напр,  [c.504]

    Бензиловые эфиры особенно удобно использовать в тех случаях, когда в качестве защитной группы применяется карбобензокси- или бензиль-ные остатки. Защита аминных групп должна удовлетворять основному требованию удаляться избирательно без одновременного расщепления пептидной связи в пептиде. По этой причине оказались непригодными бензоильные, ацетильные, карбэтокси- и карбометокси-производные аминокислот. В качестве защитных групп чаще всего применяют следующие группы (см. табл. 7). [c.488]

    Бок-защитная группа для аминокислот Р-17г [c.676]

    В книге рассматриваются в сжатой, лучше сказать в концентрированной, форме все основные химические методы синтеза производных аминокислот, введения и удаления защитных групп, методы конденсации, а также выделения и очистки синтезируемых веществ. При зтом авторы, опираясь на новейшие результаты исследований, опубликованные в последнее [c.5]

    Пептидный синтез (перед ссылками). Зервас и сотр. [9] обнаружили, что бензгидриловые эфиры пригодны для пептидного синтеза. Они получали эти эфиры либо реакцией серебряной соли N-за-щищенной аминокислоты с дифенилхлорметаиом, либо реакцией Д. с N-защищенной аминокислотой. Защитную группу отщепляют обработкой 0,2 н. раствором хлористого водорода в нитрометане. Авторы получили этим способом а- и у-бензгидриловые эфиры L-глутаминовой кислоты [101. [c.164]

    Эта группа представляет собой ацильную защитную группу, предназначенную для блокирования аминогрупп и легко удаляемую при мягкой кислотной обработке. После ацилирования аминогруппа становится химически неактивной, т. е. теряет нуклеофильные свойства, в результате делокализации электронов по амидной связи (карбамат). Эта группировка вводится при взаимодействии соответствующего хлорида с аминокислотой. Хлорид синтезируют из трег-бутанола и фосгена. [c.70]

    Классический метод удаления фталильной группы — обработка гидразингид-ратом в воде или этаноле. Побочный продукт, гидразид, отделяется при осаждении. Гидразин— хороший нуклеофил (так называемый а-эффект), атакующий ангидридоподобную фталильную группировку в условиях, при которых не затрагиваются пептидные связи. Тем не менее при наличии эфирных связей существует опасность гидразинолиза. На другие защитные группы обработка гидразином не влияет. Обработка гидразином в гидроксилсодержащих растворителях может быть заменена обработкой фенилгидразином в других органических растворителях, причем в этом случае гидразид остается в растворе, а аминокислота выпадает в осадок. [c.74]

    Металлоорганическая защитная группа (пентакарбонил [метокси(фенил)кар-бен]хром(0))) была предложена для защиты аминогруппы. Она легко удаляется обработкой трифторуксусиой кислотой при комнатной температуре. Аминогруппу можно блокировать также, сульфируя с помощью о-нитрофенилсульфохлорида. Деблокирование происходит под действием НС1, однако нитрофенилсульфопро-изводное аминокислоты следует хранить в виде соли, поскольку производное свободной кислоты нестабильно. [c.76]

    В общем случае это достигается этерификацией карбоксильной группы, подлежащей защите. Для получения метилового или этилового эфира обрабатывают аминокислоту метанолом или этанолом, насыщенным НС1 (этерификация по Фищеру). Однако обычно предпочитают эфиры, гидролиз которых легко провести в мягких условиях. Хотя эфиры омыляются основаниями гораздо легче, чем пептиды (поскольку алкоксиды — лучщие уходящие группы), используемые для этого щелочные условия нельзя применять для деблокирования полипептидов. Использование бензи-ловых эфиров позволяет удалять защитные группы при нейтральных условиях с помощью каталитического гидрирования. Бензи-ловые эфиры синтезируют из кислоты и бензилового спирта в присутствии кислоты или тиоиилхлорида (который переводит спирт в сульфохлорид, и уже последний замещается кислотой), [c.77]

    Очень часто при описании методов синтеза и свойств пептидов не рассматриваются аналогичные методы синтеза и свойства не менее важных соединений — фосфодиэфиров. Действительно, стратегия синтеза и проблемы, которые при этом возникают (например, использование ДЦГК, защитные группы, синтез на полимерном носителе и т. д.), весьма похожи, если не одинаковы, хотя никогда не обсуждаются параллельно. Восполнить этот пробел— вот цель настоящей главы. При этом, как и ранее, проводится сравнение с биосинтезом фосфатной связи. Следовательно, в настоящей главе сравниваются химические и биологические (биоорганические) свойства двух функционально важных классов макромолекул белков и нуклеиновых кислот. Разумеется, мы дополним эту картину, рассмотрев свойства еще двух мононуклеотидов, играющих важную роль в биологических процессах,— нук-леозидтрифосфатов и циклических нуклеотидов. Это показывает, что, подобно аминокислотам, для биологических систем важны не только полимерные молекулы. Рассматривая этот вопрос, мы вновь проведем сравнение химического и биологического путей синтеза. Освещаются результаты исследований, опубликованные в литературе, включая 1980 г. [c.104]


    Синтез полипептидоч. Для того чтобы связать аминокислоты в строго определенной последовательности, нужны защитные группы, которые предотвратили бы нежелательные конденсации между карбо-ксильными и амииными группами. Необходимо, чтобы такие группировки могли быть впоследствии избирательно отщеплены без затрагивания пептидных связей. [c.385]

    Затем защитная группа КБЗ отщепляется 10%-ным раствором НВг в уксусной кислоте. После промывки проводят присоединег е остатка следующей аминокислоты. Повторением дважды подобных операций, а затем омылением сложноэфирной, связи щелочью получают, например, тетрапептид. [c.192]

    В 1963 г. Р. Меррифилд [722] разработал важный метод, который с тех пор применяется для синтеза многих пептидов [723]. Этот метод называется твердофазным синтезом, или синтезом на полимерных подложках [724]. Здесь используются те же реакции, что и в обычном синтезе, но один из реагентов закреплен на твердом полимере. Например, если желательно соединить две аминокислоты (получить дипептид), то в качестве полимера может выступать полистирол, содержащий боковые группы H2 I (рис. 10.1, 99). Одну из аминокислот, защищенную трет-бутоксикарбонильной группой (Вое), закрепляют на боковых группах (стадия А). Нет необходимости, чтобы все боковые группы вступили в реакцию достаточно, чтобы это произошло с некоторыми из них. Затем гидролизом в присутствии трифтороуксусной кислоты в дихлорометане снимают защитную группу Вое (стадия Б) и к иммобилизированной аминокислоте присоединяют другую аминокислоту, используя ДЦК или другой агент сочетания (стадия В). После этого удаляют вторую защитную группу Вое (стадия Г), что дает дипептид, все еще закрепленный на полимере. Если этот дипептид и есть желаемый продукт, его можно снять с полимера действием HF (стадия Д). Если необходимо получить пептид с более длинной цепью, прибавляют другие аминокислоты, повторяя стадии В и Г. [c.156]

    Расщепление рацемических аминокислот на антиподы через их Ы-ацильные производные впервые использовал в своих классических работах Э. Фишер. Еще в конце прошлого века он получил этим путем 1-аланин, а затем и многие другие оптически активные аминокислоты, входящие в состав белковых веществ. Фишер особенно часто пользовался бензоильной или формильной защитой аминогруппы. Многие расщепления аминокислот проведены, однако, и с использованием иных защитных групп — ацетильной, п-нитробензоиль-ной, тозильной и других. Так, тозильную защиту использовали в одной из работ по расщеплению серина фталильную — при расщеплении а-аминомасляной кислоты с использованием эфедрина в качестве оптически активного основания п-нитро-фенилсульфенильную защиту — при расщеплении фенилгли-цина, фенилаланина, пролина с эфедрином, псевдоэфедрином или основанием левомицетина в качестве оптически активных оснований. При расщеплении многих рацемических аминокислот оказалась полезной карбобензоксизащита. [c.103]

    Фталоильные и другие производные. — Из множества предложенных защитных групп некоторое применение иашла фтало-ильная (Шихан, 1949 Кидд, 1949). Фталоильные производные получают нагреванием аминокислоты с фталевым ангидридом. После образования пептидной связи соединение обрабатывают спиртовым раствором гидразина и соляной кислотой, при этом освобождается аминогруппа, а защитная группировка отщепляется в виде фталилгидразида (Инг и Манске, 1926). Расщепление фталоильных производных идет быстрее, чем гидрогенолиз карбобензоксипроизводных, для завершения которого иногда требуется несколько дней. [c.677]

    Гормои из бычьего гипофиза (Рб-МСГ) отличается от свиного гормона (р-МСГ) тем, что в нем вторая аминокислота (глутаминовая) замещена на серин. Синтетический Рб-МСГ, несущий в молекуле шесть защитных групп, при испытании на коже лягушки показывает активность 1,4-10 ед г по сравнению с 1,2-10 ед/г для Рб МСГ (Швайцер, 1959). Синтетичес <ий 8—13 гексапептид имеет активность только 2-10 ед г ((Кдапелер, 1961). [c.700]

    При расщеплении этим способом бензилалкил(арил)карбонатов или -карбаматов образующиеся моноэфир угольной кислоты или N-замещенная карбаминовая кислота самопроизвольно декарбок-силируются соответственно в окси- или аминосоединение. Бензил-оксикарбонильная и л-нитробензилоксикарбонильная защитные группы широко используются в химии аминокислот  [c.75]

    В главе Аминокислоты изменения коснулись главным образом разделов, посвященных синтезу и анализу, причем особое внимание уделено биотехнологическим способам получения аминокислот, асимметрическому синтезу и новейшим методам выделения. В главе Пептиды более точно изложены и обоснованы цели химического синтеза и введен краткий исторический очерк развития этой области. Защитные группы представлены в таком порядке, как это обычно принято в литературе. При описании методов синтеза пептидов, которых в настоящее время известно около 130, авторы ограничивались наиболее широко применяемыми в практике пептидного синтеза. Кроме того, затронуты новые интересные направления пептидного синтеза, как, например, ферментативный. В разделе Пептидные синтезы на полимерных носителях рассмотрены важнейшие варианты этих синтезов. Семисинтез белков описывается во вновь введенном разделе Стратегия и тактика . В этом же разделе авторы попытались критически оценить синтез пептидных и белковоподобиых соединений и определить его возможности и границы применения. [c.7]

    Защитную группу можно удалить каталитическим гидрогенолнзом или действием холодного раствора бромистого водорода в уксусной кислоте. Вновь образовавшаяся амидная связь при этом не разрывается и рацемизации а-углеродного атома не происходит. В случае серусодержащих аминокислот для удаления защитной группы рекомендуется применять триэтилсилан (СаНб)з81И и хлорид палладия, так как соединения, содержащие серу, [c.393]

    Вслед за присоединением последнего аминокислотного остатка аддукт полипептида и полимера обрабатывают смесью бромистого водорода и три-фторуксуспой кислоты (ТФУ). В результате полипептид освобождается от полимера, а с N-концевой аминокислоты снимается защитная группа [c.406]

    Замечательно то, что применяемые защитные группы характеризуются как различной степенью устойчивости их овязи с аминной группой, так и разнообразием методов их отщепления Так, тритильный остаток отщепляют слабой кислотой, а трифторацетильный — щелочью, карбобензокси и дибензильную группы удаляют гидрированием не подвергаются гидрогенолизу карбоксициклопентильная и карбокси-циклогексильная группы и т д. Это дает исследователю возможность подбирать различные комбинации экранирования аминогруппы при синтезе сложных полипептидов из различных аминокислот. [c.490]

    Структура книги и рекомендации но ее использованию. После общих замечаний по планированию, подготовке и проведению органических реакций, по аппаратурному обеспечению эксперимента, ведению лабораторного журнала (гл. I) говорится о получении и превращениях соединений с простыми функциональными группами алкенов, алкинов, галогеналканов, спиртов, простых эфиров и оксиранов, органических соединений серы, аминов, альдегидов и кетонов, а также их производных, карбоновых кислот и их производных, ароматических соединений (гл. 2). Полученные соединения служат затем в качестве строительного материала для синтеза более сложных молекул. После описания важнейших методов образования связи С—С (разд. 3.1) следует раздел, посвященный образованию и превращению карбоциклов (разд. 3.2). гетероциклов (разд. 3.3) и красителей (гл. 4). Далее изложены. методы введения защитных групп и изотопных меток (гл. 5), а также приведены примеры регио- и стереоселективных реакций (гл. 6). Центральное место в книге занимают более сложные синтезы аминокислот, алкалоидов, пептидов, углеводов, терпенов, вита.минов, ферромонов, простаглан-динов, инсектицидов и фармацевтических препаратов, планирование и разработка которых обсуждаются с привлечением принципов ретро-синтетического расчленения (гл. 7). Почти все рассмотренные в этой [c.10]

    В первую очередь получают частично замещенные аминокислоты, при этом они одновременно теряют цвиттер-ионную структуру. Вторая ступень, собственно образование пептидной связи, протекает в две стадии. Сначала нужно активировать М-защишенный карбоксильный компонент. Затем происходит собственно образование пептидной связи, которое протекает либо одноступенчато (вместе с активированием), ли последовательно в следующую стадию. На третьей ступени защитные группы селективно отщепляются, причем полученные частично защищенные производные дипептидов могут использоваться для дальнейших синтезов как карбоксильные или аминокомпоненты. Само собой разумеется, что в случае синтеза дипептида обе защитные группы удаляются ошовременно. [c.96]


Смотреть страницы где упоминается термин Аминокислоты защитные группы: [c.268]    [c.164]    [c.524]    [c.238]    [c.238]    [c.78]    [c.166]    [c.386]    [c.386]    [c.25]    [c.14]    [c.680]    [c.434]    [c.405]    [c.261]    [c.414]    [c.470]    [c.471]   
Методы эксперимента в органической химии (1968) -- [ c.369 ]




ПОИСК







© 2024 chem21.info Реклама на сайте