Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ГЛИЦИН И ПУТИ ЕГО ОБМЕНА

    Следует упомянуть о другом важном факте. Концентрирование химически аналогичных вешеств внутри клетки при активном транспорте может происходить без затраты энергии путем обмена. Было показно, что поток какой-либо аминокислоты, например глицина, внутрь клеток (опыты проводились с клетками асцитного рака Эрлиха) стимулируется потоком другой аминокислоты изнутри во внешнюю среду. Причем ток одной аминокислоты и противоток второй примерно равны. Подобное же наблюдение было сделано на примере активного переноса сахаров (глюкозы, ксилозы, маннозы) в эритроцитах. Введенная выше общая схема активного транспорта объясняет это явление. Действительно, поскольку ферментативная реакция (1) обратима, то в присутствии большой концентрации сходного, но не идентичного метаболита а внутри клетки у внутренней поверхности мембраны будет идти ферментативный обмен  [c.180]


    Серин легко превращается в пируват под действием сериндегидратазы. В связи с этим в тканях имеются условия для превращения глицина (через серин) в пируват. Этим путем осуществляется участие глицина в обмене углеводов. Важную роль играет серин в биосинтезе сложных белков — фосфопротеинов, а также фосфоглицеридов. Помимо фосфатидилсерина, углеродный скелет и азот серина используются в биосинтезе фосфатидилэтаноламина и фосфатидилхолина (см. главу 11). [c.453]

    Кроме того, аминоазот других аминокислот, например, валина, лейцина, изолейцина, глицина и метионина, может путем переаминирования переходить на кетоглютаровую кислоту, давая глютаминовую кислоту. Таким образом, доля азота аминокислот, подвергающаяся обмену через указанную систему, еще более увеличивается. [c.354]

    Глицин синтезируется переаминированием глиоксиловой кислоты, а глиоксиловая кислота, как сейчас установлено в опытах с микробами, возникает при расщеплении одного из членов цикла трикарбоновых кислот, а именно изолнмонной кислоты (на глиоксиловую и янтарную). В то же время пусковая реакция цикла (конденсация ацетилкоэнзима А со щавелевоуксусной кислотой) материально обеспечивается углеводным обменом, поскольку пировиноградная кислота — промежуточный продукт углеводного обмена — путем карбоксилирования дает щавелевоуксусную кислоту или, подвергаясь окислительному декарбоксилированию в присутствии КоА, дает ацетилкоэнзим А (стр. 260). Кроме того, глицин может образоваться при распаде серина. [c.379]

    Пути синтеза и распада аминокислот бывают часто, но не всегда различными. В ряде случаев противопоставление синтеза и катаболизма носит произвольный характер, например при рассмотрении обмена аргинина, орнитина и цитруллина или глицина и серина. В нижеследующих разделах этой главы при рассмотрении обмена каждой аминокислоты реакции синтеза и катаболизма обсуждаются вместе. Такой порядок изложения представляет некоторые удобства, однако совершенно очевидно, что многие реакции обмена служат связующими звеньями между аминокислотами, обмену которых посвящены отдельные разделы. [c.307]

    ГЛУТАТИОН. Соединение, состоящее из трех остатков аминокислот глутаминовой кислоты, цистеина и глицина. Содержится во всех клетках растений, животных и микробов. Его много в зародыше зерна пшеницы, в дрожжах. Играет важную роль в обмене веществ. В организме выполняет окислительно-восстановительную функцию. Входит в состав некоторых ферментов и активизирует деятельность других ферментов (нротеиназ). Г. получают путем извлечения из дрожжей и химическим синтезом. [c.74]


    Хотя эксперименты, в которых в качестве индикаторов использовались меченные изотопами вещества, дали много ценных сведений относительно синтеза белка, тем не менее в этой области до сих пор еще остались нерешенными основные проблемы. На основании этих опытов невозможно решить, происходит ли непрерывное самообновление белков путем синтеза и последующего распада отдельных молекул белка или же оно обусловлено тем, что каждая из этих молекул, не распадаясь нацело, постоянно обменивает свои отдельные составные части. Подобный обмен может достигаться, например, путем временного размыкания пептидных связей и включения аминокислоты между концами раскрытых цепей. Для разрешения этой проблемы были использованы иммунологические методы. Как уже указывалось в гл. XIV, антитела находятся во фракции у глобулинов сыворотки. Если вызвать образование антител у кролика, иммунизируя его каким-либо антигеном, то вновь образованные иммунные т-глобулины можно отдифференцировать от f-глобулинов, присутствовавших до иммунизации, по их способности преципитировать соответствуюший антиген. Так, например, инъекция полисахарида пневмококков SIII приводит к образованию SIII-анти-тел во фракции глобулинов иммунной сыворотки. Если подопытным кроликам помимо антигена вводится N -глицин, то через небольшой промежуток времени меченая аминокислота обнару- [c.390]

    Одним из важнейших результатов применения меченых атомов к изучению живых организмов было, как уже указывалось, открытие высокой динамичности процессов распада и ресинтеза жиров, углеводов и белков, ведуш,их к быстрому их обновлению в тканях и органах. В работах Шенгеймера [1061 и других биохимиков это было наглядно показано для жиров и углеводов путем применения дейтерия и изотопов углерода, а для белков, главным образом, путем применения тяжелого азота, радиоактивных изотопов фосфора и серы. При введении в пищу жирных кислот, меченных дейтерием в радикале, этот дейтерий быстро появляется в жирах всех органов и, прежде всего, в жировых запасах, откуда он переходит в другие места. Средняя продолжительность пребывания каждого атома меченого водорода в теле позвоночных близка к двум неделям. При кормлении крыс гидролизатом казеина, содержавшим дейтерий, было установлено, что за три дня обновляется 10% протеинов печени и 25% протеинов мускулов. При кормлении казеином с цитратом аммония, меченным тяжелым азотом, последний через несколько дней был обнаружен почти во всех аминокислотах тела (но не в несинтезирующемся в нем лизине), в креатине мышц, гиппуровой кислоте мочи и проч. Если животное имело бедную белками пищу, то оно усваивало около половины вводимого азота. При нормальной диете, когда животное находилось в состоянии азотного равновесия, усвоение азота уменьшалось, но качественная картина оставалась той же. Столь же быстрое усвоение и распределение азота в организме наблюдается при кормлении глицином, лейцином, тирозином и другими аминокислотами, меченными тяжелым азотом. Азот из пищи особенно быстро усваивается в виде синтезируемых глютаминовой и аспарагиновой кислот. Это, очевидно, связано с быстрым течением открытых А. Е. Браунштейном и М. Г. Крицман реакций энзиматического переаминирования этих кислот с а-кетокислотами, а также с их исключительной ролью в общем обмене аминокислот и протеинов [11]. [c.496]

    Применение изотопного метода позволило выявить различные стороны превращения глицина в организме. Оказалось, что глицин участвует в процессах обезвреживания бензойной кислоты путем синтеза гиппуровой кислоты (стр. 364) и в образовании парных соединений с желчными кислотами (стр. 329). Он может дать начало образованию ряда соединений муравьиной и уксусной кислотам, этаноламину, серину, производным пурина и пор-фиринам. Благодаря этому глицин связан с обменом углеводов и жиров (через уксусную кислоту), с обменом серина, нуклеотидов и нуклеиновых кислот (участвуя в синтезе производных пурина) и с обменом гемоглобина (как предшественник протопорфирина). Кроме этого, глицин участвует в синтезе важных в физиологическом отношении веществ — креатина и глютатиона. [c.365]

    Центральное место в азотистом обмене у микроорганизмов занимает глутамин, так как обычно не свободный аммиак, а его амидная группа служит донором азота при синтезе триптофана, АМР, СТР, глюкозамин-6-фосфата, гистидина и карбамоилфосфата. Кроме того, а-аминогруппа глутамина используется в качестве источника азота для синтеза глицина и аланина, осуществляемого при действии специфических трансами-наз. Естественно было ожидать, что именно глутамин-синтетаза как первый фермент сильно разветвленного пути, ведущего к синтезу широкого круга различных метаболитов, служит первичной мишенью для регуляторных воздействий. Однако механизм регуляции активности этого фермента, установленный Э. Стэдманом и его сотрудниками, оказался необычайно сложным. [c.108]



Смотреть страницы где упоминается термин ГЛИЦИН И ПУТИ ЕГО ОБМЕНА: [c.374]    [c.267]    [c.288]    [c.319]    [c.375]   
Смотреть главы в:

Нейрохимия -> ГЛИЦИН И ПУТИ ЕГО ОБМЕНА

Нейрохимия -> ГЛИЦИН И ПУТИ ЕГО ОБМЕНА




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния



© 2025 chem21.info Реклама на сайте