Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез генов

Рис. 7. Схема синтеза гена транспортной РНК аланина по Коране. Вся двойная цепь ДНК разбита на 15 олигонуклеотидов, к-рые были синтезированы химически. На схеме видны липкие концы , соединяющие отдельные блоки, к-рые затем стыкуются с помощью полинуклеотидлигазы. В нижней строке показан др. вариант разбиения на блоки. Рис. 7. <a href="/info/25483">Схема синтеза</a> гена транспортной РНК аланина по Коране. Вся <a href="/info/33637">двойная цепь</a> ДНК разбита на 15 олигонуклеотидов, к-рые были синтезированы химически. На схеме видны липкие концы , соединяющие <a href="/info/1903975">отдельные блоки</a>, к-рые затем стыкуются с помощью полинуклеотидлигазы. В нижней строке показан др. вариант разбиения на блоки.

    Методы, развитые Кораиой, позволили решить проблему синтеза гена. Корана провел химический синтез последовательности дезоксинуклеотидов, комплементарной к известной последовательности рибонуклеотидов в Ала-тРНК Дрожжей [lit]. [c.587]

    Аналогичным путем был синтезирован соматостатин — гормон гипоталамуса (рис. 5.13). Молекула соматостатина состоит из 14 аминокислотных остатков. Соматостатин подавляет вьщеление инсулина и гормона роста челов ека. В Национальном медицинском центре Хоуп (Калифорния) бьш осуществлен химико-ферментативный синтез гена длиной в 42 нуклеотида, способного кодировать соматостатин. Участок ДНК, кодирующий гормон соматостатин, получен путем соединершя тринуклеотидов. Из 52 н. п. синтетического гена 42 пары составляли структурный ген гормона, а остальные служили для присоединения синтетического гена к плазмиде рВК322, [c.135]

    Молекулярная биотехнология — это увлекательнейшая область научных исследований, с появлением которой произошел настоящий переворот во взаимоотношениях человека с живой природой. В ее основе лежит перенос единиц наследственности (генов) из одного организма в другой, осуш ествляемый методами генной инженерии (технология рекомбинантных ДНК). В большинстве случаев целью такого переноса является создание нового продукта или получение уже известного продукта в промышленных масштабах. В ч. I мы познакомим читателя с концепциями молекулярной биотехнологии и теми микроорганизмами, которые в ней используются, с основами молекулярной биологии и методологией рекомбинантных ДНК. Будут описаны такие методы, как химический синтез генов, полимеразная цепная реакция (ПЦР), определение нуклеотидной последовательности (секвенирование) ДНК. Помимо успешного клонирования нужного гена очень важно обеспечить его правильное функционирование в организме нового хозяина, поэтому мы остановимся также на способах оптимизации работы клонированных генов в про- и эукариотических системах. И наконец, мы рассмотрим, как можно улучшить свойства конечных продуктов, модифицируя клонированные гены путем введения в них специфических нуклеотидных замен (мутагенез in vitro). В целом материал, изложенный в первой части, служит фундаментом, который позволяет понять различные аспекты конкретных применений молекулярной биотехнологии. [c.13]

Рис. 5.24. Синтез генов с помощью ПЦР. Перекрывающиеся олигонуклеотиды (А и В) отжигают и достраивают образовавщийся дуплекс с заглубленными 3 -гидроксильными концами. Двухиепочечные молекулы денатурируют, добавляют в реакционную смесь вторую пару олигонуклеотидов (Си О), перекрывающихся с продуктами первого раунда ПЦР, и отжигают. Осуществляют второй раунд ПЦР, добавляют следующую пару олигонуклеотидов (Е и Р), осуществляют третий раунд ПЦР и т. д. В результате образуется двутсцепочечная ДНК, идентичная искомому гену. Одинаковыми буквами со щтрихом или без (А и А, В и В и т. д.) обозначены комплементарные участки ДНК. Нуклеотидная последовательность каждого олигонуклеотида соответствует таковой определенных сегментов ДНК. Рис. 5.24. Синтез генов с помощью ПЦР. Перекрывающиеся олигонуклеотиды (А и В) отжигают и достраивают образовавщийся дуплекс с заглубленными 3 -<a href="/info/894348">гидроксильными концами</a>. Двухиепочечные молекулы денатурируют, добавляют в <a href="/info/26770">реакционную смесь</a> вторую пару олигонуклеотидов (Си О), перекрывающихся с продуктами первого раунда ПЦР, и отжигают. Осуществляют второй раунд ПЦР, добавляют следующую пару олигонуклеотидов (Е и Р), осуществляют третий раунд ПЦР и т. д. В результате образуется двутсцепочечная ДНК, идентичная искомому гену. Одинаковыми буквами со щтрихом или без (А и А, В и В и т. д.) обозначены комплементарные участки ДНК. <a href="/info/98217">Нуклеотидная последовательность</a> каждого олигонуклеотида соответствует таковой определенных сегментов ДНК.

    ДНК-лигазе, использованной Кораной в синтезе гена, для соединения элементов донора и акцептора требовалось применение матрицы из Е. соИ, инфицированной бактериофагом Т4. Однако была выделена менее требовательная РНК-лигаза. Она катализирует фосфорилирование З -гидроксильной группы рибоолигонук- еотида 5 -фосфатом донора. Фермент, по-видимому, не проявляет специфичности к основаниям и такие малые фрагменты как тримеры могут быть соединены им без участия матрицы. Сшиванием двух гексамеров r(Ap)s и rp(Up)5U был получен с прекрасным выходом додекамер r(Ap)s p (Up)5U [17]. [c.187]

    В конце 60-х-начале 70-х гг. при синтезе в-в сложной структуры начали применять в кач-ве катализаторов ферменты (т. наз. комбинированный химико-энзиматич. синтез). Этот подход был использован Г. Кораной для первого синтеза гена. Использование ферментов позволило осуществить строго избирательное превращение ряда прир, соед. и получить с высоким выходом новые биологически активные производные пептидов, олигосахаридов и нуклеиновых к-т. [c.288]

    Другой метод состоит в прямом химическом синтезе гена, исходя из нуклеотидной последовательности ДНК, которая должна соответствовать выбранному белку. Из-за вырожденности кода может быть много разных последовательностей, и экспериментатор волен выбирать, какую из них предпочесть. К синтетическому гену пришивают регуляторные участки и встраивают в плазмиду. [c.63]

    Синтез генов с помощью ПЦР Получение генов с помощью ПЦР - гораздо более быстрый и экономичный метод, чем тот, который основан на отжиге олигонуклеотидов с перекрывающимися концами, заполнении брешей с помощью ДНК-полимеразы и сшивании разрывов ДНК-лигазой. В одной из методик конструирование гена начинается с отжига двух перекрывающихся олигонуклеотидов (А и В), отвечающих центральной части гена (рис. 5.24). После отжига образуется дуплекс с заглубленными 3"-гидроксильными группами, служащими точками инициации синтеза комплементарных цепей при ПЦР. Затем в реакционную смесь добавляют еще два олигонуклеотида, С и [c.102]

    Эта область биохимии развивается с головокружительной скоростью. Редко проходит месяц без того, чтобы в биохимии не появилось сообщения о каком-нибудь крупном достижении или открытии. За расшифровкой генетического кода в начале 60-х годов последовала нескончаемая вереница захватывающих открытий и обобщений крупного масштаба. Среди них определение нуклеотидных последовательностей многих генов, искусственный синтез генов, соединение генов в новых сочетаниях, встраивание генов одних видов в клетки других видов и получение с помощью таких измененных клеток продуцентов многих новых белков, полезных для тех или иных целей. Без преувеличения можно сказать, что в биохимической генетике началась новая эра, которая несомненно окажет в будущем существенное влияние на здоровье и жизнедеятельность человека. [c.851]

    Большое количество исследований было посвящено химическому синтезу гена, кодирующего ЛИЧ из 166 аминокислот. Соответственно, данный ген из 514 н. п. оказался самым крупным ге ном, синтезированным в 1982 г. группой английских ученых. В Рог сии в 1984 г. был осуществлен полный синтез гена а-И размере  [c.143]

    Ядром генетической инженерии являются методы выделения и синтеза генов, их идентификации, создание работающих генетических структур и, по сути дела, новых организмов. Генетическая инженерия быстро развилась в прикладную отрасль биологии со своей индустрией, производящей различные фармацевтические препараты инсулин, необходимый больным сахарным диабетом, интерферон, обладающий антивирусным действием, полипептидные гормоны и др. [c.38]

    X. Г. Корана создал способ синтеза гена аланиновой транспортной РНК, содержащей 72 нуклеотида. [c.696]

    За десять лет, прошедших после обнародования теории двойной спирали ДНК и принципа комплементарности, раскрыты молекулярные механизмы репликации ДНК установлены процессы, отвечающие за расшифровку генетической информации и регуляцию синтеза генных продуктов выяснены многие причины, по которым эти продукты синтезируются в измененном виде. Со времени выхода в свет этой публикации и до наших дней открытие Уотсона и Крика нисколько не утратило своего значения. В частности, если бы не была установлена структура ДНК, сейчас не существовало бы технологии рекомбинантных ДНК. [c.45]

    Не менее важной задачей, непосредственно связанной с биотехнологией, была разработка простых и быстрых методов синтеза гена. Сейчас используются два из них. В первом под действием дегидратирующих агентов проводится фос-форилирование сахаров. Во втором предварительно синтезируется промежуточная структура, которая может быть использована для получения необходимой скелетной фосфатной связи. Второй метод приспособлен для реализации на твердотельной подложке. Он был положен в основу рутинной процедуры синтеза нуклеотидных цепей (олигонуклеотидов) длиной до 50 пар оснований. [c.117]

    К числу важнейших успехов в области нуклеиновых кислот нужно отнести осуществленный в 1970 г. Корана и сотр. полный синтез гена аланин-т-РНК, т. е. участка ДНК, соответствующего молекуле т-РНК, переносящей остаток аминокислоты аланина. [c.412]


    Следующие пары олигонуклеотидов - один достраивающий ген слева, другой справа -последовательно добавляют в смесь до тех пор, пока не будет синтезирован весь ген. Длина этих олигонуклеотидов обычно бывает равна 50 звеньям. Каждый блок ПЦР состоит из двадцати 4-минутных раундов. Для синтеза гена длиной 1000 п. н. нужно 10 блоков , так что ген можно получить в течение одного дня. При этом, как и в случае синтеза генов другими методами, последнюю пару нуклеотидов (т. е. 5"- и 3 "-концы) можно снабдить дополнительными последовательностями, фланкирующими кодирующий участок и облегчающими последующее встраивание гена в вектор. [c.102]

    Какие две стратегии химического синтеза гена длиной 0,5 т. п. н. вы можете предложить Какую из них вы предпочтете  [c.104]

    Понятно, что это чудо химической и инженерной мысли решает все проблемы, связанные с искусственным синтезом гена. Из лоскутков по 20 нуклеотидов можно при помощи лигазы сшить ген любой длины. Это решает также проблему получения в больших количествах коротких кусков ДНК для их кристаллизации. Впрочем, такие машины появились в самом начале 80-х годов, но в конце 70-х в некоторых лабораториях, занимавшихся синтезом генов, уже умели быстро синтезировать лоскутки ДНК, правда, вручную. [c.135]

    Вполне реален синтез гена, кодирующего структуру простого белка, например инсулина. На очереди стоят задачи синтеза генов для ряда белков, а также введения этих искусственных генов в клетки в таких условиях, когда они могут выражаться , т. е. подвергаться транскрипции, и запустить синтез соответствующих белков. Решение этих задач должно составить содержание новой области, получившей название генной инженерии . [c.198]

    Выделение и синтез генов [c.891]

    Способность живых организмов и самих молекул ДНК к размножению открыла широкую дорогу селекционным методам для решения биохимических задач. Возможность вырезания из ДНК определенных генов, получения их путем обратной транскрипции матричных РНК и разработка методов искусственного химикоферментативного синтеза генов позволили манипулировать генами, в том числе вставлять их в плазмиды или вирусы, а затем вносить их в микроорганизмы для последующего размножения. Микробиологические методы позволили разработать методы селекции тех популяций микроорганизмов (клонов), которые выросли из отдельных клеток несущих желаемые признаки, например способных продуцировать определенные белки, не свойственные этим организмам. Так родилась Г№ ная инженерия, которая не только открыла новые горизонты в биотехнологии, но и стала важнейшим инструментом биохимических исследований. [c.232]

    Чтобы создавать рекомбинантные ДНК, несущие желаемый ген, необходимо прежде всего располагать этим геном. Для этого используют три основных способа. Во-первых, если известна первичная структура белка, получение которого желательно осуществить методами генетической инженерии, можно, основываясь на генетическом коде, построить нуклеотидную последовательность, программирующую этот белок, и осуществить химико-ферментативный синтез гена. Так, например, были осуществлены синтезы нескольких генов, кодирующих различные интерфероны. Во-вторых, можно выделить из тканей, в которых происходит экспрессия гена, информационные РНК, среди которых должна присутствовать и мРНК, кодирующая необходимый белок, провести с помощью обратной транскриптазы синтез комплементарной ДНК (сокращенно кДНК) и перевести ее в двунитевую структуру с помощью Д П<-полимеразы. Можно, наконец, вырезать желаемый ген непосредственно из ДНК того объекта, бело которого собираются продуцировать. Два последних подхода не дают сразу же индивидуального гена и требуют предварительного отбора из сложной смеси кДИК или фрагментов хромосомной ДНК. Эта проблема решается уяЛ на уровне илстои микроорганизмов, в которые введены новые наследственные программы, и пути ее решения будут изложены несколько ниже. [c.301]

    ДНК некоторых вирусов реплицируются в одном направлении по механизму катящегося кольца , вариант которого представлен на рис. 28-5. Вначале одна из двух цепей кольцевой родительской ДНК расщепляется ферментом. Затем к З -концу расщепленной цепи присоединяется несколько новых нуклеотидов. Рост новой цепи на кольцевой матрице осуществляется за счет постепенного вытеснения 5 -концевой части расщепленной цепи из катящейся кольцевой матрицы. По мере роста новой цепи вытесненный 5 -хвост становится линейной матрицей для синтеза новой комплементарной цепи. Этот синтез на линейной матрице продолжается до тех пор, пока не образуется дочерняя цепь ДНК, комплементарная одному обороту кольцевой матрицы. Двухцепочечный хвост отщепляется затем с помощью фермента, и на 5 -конце опять может начинаться процесс репликации. Таким путем с кольцевой матрицы может сходить множество комплементарных копий кольцевой ДНК. Механизм катящегося кольца испол ,зуется в ооцитах в процессе синтеза генов рРНК он позволяет получать большое число копий этих генов, расположенных в тандемной последовательности, что в свою очередь дает возможность синтезировать одновременно много рРНК. Этот механизм необходим ооцитам для того, чтобы производить много рибосом для быстрого синтеза клеточных белков в процессе ускоренно- [c.898]

    Первый химический синтез гена, осзтцествленный примерно 20 лет назад, потребовал многих человеко-лет работы. С той поры в этой области достигнуты замечательные успехи, и сейчас синтез гена того же размера один исследователь может выполнить всего за две недели. В промышленных лабораториях осушествлено несколько синтезов генов инсулина, а в Англии был проведен замечательный синтез гена интерферона. Оба этих белка перспективны при использовании в медидине. Их выгодно производить и с коммерческой точки зрения. Недавно выполнен синтез гена для фермента рибонуклеазы, позволяющий проводить в дальнейшем изменения в гене и тем самым открывающий возможность изменять физические и химические свойства белка желаемым образом. [c.172]


Смотреть страницы где упоминается термин Синтез генов: [c.354]    [c.75]    [c.135]    [c.177]    [c.180]    [c.108]    [c.496]    [c.486]    [c.86]    [c.103]    [c.270]    [c.12]    [c.232]    [c.613]    [c.437]    [c.255]    [c.199]   
Смотреть главы в:

Молекулярная биотехнология принципы и применение -> Синтез генов


Молекулярная биотехнология принципы и применение (2002) -- [ c.86 , c.87 , c.87 , c.88 ]

Генетика с основами селекции (1989) -- [ c.272 ]




ПОИСК







© 2025 chem21.info Реклама на сайте