Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез циклическое фотофосфорилирование

    Частично именно эти достижения и объясняют новый подъем физиологических исследований. Однако еще большее значение имеют те успехи, которые были достигнуты в последние годы при изучении фотосинтеза именно на физиологическом уровне. Только наблюдения над целыми растениями или их органами позволяют отделить явления, имеющие биологическое значение, от артефактов. Без подобных наблюдений сделать это невозможно. Достаточно сослаться на такой пример, как циклическое фотофосфорилирование, существование которого в растениях и до сих пор остается под сомнением.  [c.5]


    Все эти различия являются следствием отсутствия у них ФС И они не могут использовать воду как донор электронов в нециклическом электронном транспорте, образовывать кислород из воды при фотосинтезе и обладают только циклическим фотофосфорилированием. Почти все пурпурные и зеленые бактерии — строгие анаэробы. [c.186]

    Функция I фотосистемы сводится к получению клеточной энергии в процессе циклического фотофосфорилирования. Восстановитель образуется в темновых реакциях. Этот вариант наиболее близок к схеме фотосинтеза, осуществляемого пурпурными бактериями (см. рис. 80, Л). [c.276]

    Клеточный механизм фотосинтеза в ходе эволюции сформировался у одноклеточных организмов (у бактерий), причем цитохромы начали принимать участие в транспорте электронов, по-видимому, уже у первичных гетеротрофов. Как следует из приведенной схемы, сначала возник механизм циклического фотофосфорилирования (ФС I), а затем у цианобактерий -молекулярный комплекс нециклического фотофосфорилирования (ФС I -Ь ФС II). Пентозофосфатный цикл окисления глюкозы также существовал у первичных гетеротрофов. Его обращение с использованием энергии света стало основным способом восстановления СО2 у растений (цикл Кальвина). [c.121]

    Если растения на свету дышат, то все пять упоминавшихся выше показателей характеризуют результирующую, или видимую скорость фотосинтеза. Таким образом, наблюдаемое поглощение СОг представляет собой разность между количеством, поглощенным в процессе фотосинтеза, и количеством, выделенным при дыхании обратное справедливо для кислорода увеличение сухого веса и запасенной химической энергии также представляет собой чистый прирост, причем излучаемое тепло включает и то, которое выделяется в процессе дыхания. Высокие скорости фотосинтеза могут превышать скорость (темпового) дыхания в 10—30 раз. При таких условиях считается маловероятным, чтобы дыхание могло в заметной степени влиять на измеряемую скорость фотосинтеза, а потому им часто пренебрегают. Для некоторых целей это может быть наилучшим подходом при любой скорости фотосинтеза. В тех случаях, например, когда изучается корреляция между фотосинтезом и ростом, нас интересует, конечно, именно видимая скорость фотосинтеза. Если же внимание сосредоточено на самом фотосинтезе, то в идеале следует измерять образование восстановительной силы, которое, собственно, и представляет собой первичный фотосинтетический процесс. Как будет видно из гл. V, есть основание считать, что истинное (а не видимое) фотосинтетическое образование кислорода довольно точно характеризует этот процесс, хотя данный показатель и не учитывает возможное образование аденозинтри-фосфата (АТФ) путем циклического фотофосфорилирования (если только оно действительно происходит in vivo), поскольку оно не сопровождается выделением кислорода. [c.80]


    Здесь допущена неточность. На самом деле оба процесса — и образование восстановителя, сопряженное с фосфорилированнем (нециклическим), и циклическое фотофосфорилирование — вызываются светом всей фотосинтетически активной области спектра ( 380—700 нм). Однако циклическое фосфорилирование, по мнению Арнона, происходит при поглощении света одной из двух пигментных систем, а именно системой I спектр ее поглощения простирается несколько дальше в область дальних красных лучей, чем спектр поглощения коротковолновой системы II, участвующей в образовании восстановителя и в нециклическом фотофосфорилировании. Явление усиления в этом случае объясняют тем, что при добавлении коротковолновых лучей образуется необходимый для фотосинтеза восстановитель, который не образуется при облучении светом, поглощаемым одной только системой I. Наконец, точнее было бы говорить не об образовании восстановителя при нециклическом фотофосфорилировании, а наоборот — о нециклическом фотофосфорилировании при образовании восстановителя. — Прим. ред. [c.274]

    Влияние кофактора циклического фотофосфорилирования — флавинмононуклеотида (ФМН) — на фиксацию С Оз в процессе фотосинтеза хлоропластов, изолированных из листьев сахарной свеклы (Требст, Лосада, Арнон, [c.254]

    В пользу существования циклического фотофосфорилирования в интактных клетках зеленых водорослей можно привести еще целый ряд доводов. Один из таких доводов вытекает из фотохимической ассимиляции органических субстратов. За исключением некоторых видов сине-зеленых водорослей (например, Ana ystis), которые, по-видимому, неспособны использовать никакие органические вещества, боль-1ЛИНСТВ0 растений может потреблять, например, глюкозу или ацетат в качестве единственного источника углерода и энергии независимо от фотосинтеза. Было найдено, что поглощение глюкозы, зависящее от АТФ, может стимулироваться светом [54] и может подавлять фотовосстановление [12]. Некоторые водоросли не могут расти на глюкозе в темноте или только на свету без глюкозы — им необходимы оба [c.580]

    Важным звеном в цепи доказательств, связывающих световую фазу фотосинтеза с темновой ассимиляцией СОг в хлоропластах, были опыты, показывающие значение циклического и нециклического фотофосфорилирования. Нециклическое фотофосфорилирование дает три продукта световой фазы фотосинтеза Ог, НАДФ-Нг и АТФ. Циклическое фотофосфорилирование дает только АТФ, и участие этой реакции в ассимиляции СОг необходимо только тогда, когда АТФ нециклического фотофосфорилирования недостаточно для ассимиляции СОг до уровня углевода. Таким образом, ассимиляция СОг зависит от должным образом сбалансированного участия обоих видов фотофосфорилирования. [c.329]

    По фотофосфорилированию у растений выполнено огромное число научных работ [1707, 1870]. Сравнительная роль нециклического и циклического фотофосфорилирования была установлена исследователями школы Арнона [1338]. Было показано, что в противоположность бактериям, у которых преобладает циклический процесс, у растений в фотосинтезе доминирующим фотохимическим процессом, по-видимому, является нециклическое фотофосфорилирование, поскольку, кроме того что оно поставляет АТФ, оно также представляет собой единственный механизм, выполняющий перенос водорода (через ТПН) от воды к СОг. Таким образом, циклическое фотофосфорилирование у растений, вероятно, удовлетворяет потребность в АТФ для ассимилирования углерода, которая не удовлетворяется полностью нециклическим фотофосфорилированием . Гест [685, 686], не соглашающийся с мнением о роли циклических процессов у бактерий, считает нециклический поток электронов и фотофосфорилирование высокоусовершенствованным и уникальным процессом — фо-тофитотрофией. Первый сравнительно устойчивый акцептор электронов в нециклическом потоке у растений — ферредоксин [76—78, 81, 82, 88], но поиск первичного акцептора элек- [c.126]

    Как уже отмечалось, в хлоропластах обкладки отсутствуют граны, а следовательно, слабо представлена ФС П, необходимая для нециклического транспорта электронов, однако в них в изобилии накапливается крахмал. Объясняется это тем, что в хлоропластах обкладки используется поставляемый малик-энзимом NADPH, а также тот Oj, который образовался при окислительном декарбоксилировании малата (или аспар-тата). В этих хлоропластах в процессе циклического фотофосфорилирования синтезируется большое количество АТР и фиксация СО 2 осуществляется по типу цикла Кальвина. У некоторых растений с С4-путем фотосинтеза (амарант, лебеда) яблочная кислота декарбоксилируется в митохондриях клеток обкладки с восстановлением NAD. [c.95]

    В настоящее время процесс фотосинтеза разделяют на тем-новую и световую фазы. Темновая фаза состоит из реакций, при которых образуются углеводы и некоторые другие соединения из СО2. Синтез этих соединений в темновой фа е происходит с участием АТФ и НАДФ Н2, которые возникают в световой фазе при фотосинтетическом фосфорилировании. Было показано, что количество образующихся АТФ и НАДФ Нг, в результате циклического и нециклического фотофосфорилирования достаточно для восстановления СО2 до уровня углеводов в темповых реакциях без света. [c.136]


    В то же время в работах, проводившихся на субклеточном и молекулярном уровнях, использовались весьма разнообразные и эффективные методы. Это привело к получению ряда выдающихся результатов. В частности, были открыты явления циклического и нециклического фотофосфорилирования, установлено существование фртосинтетической цепи переноса электронов, а также существование нескольких фотохимических систем, изучены многие особенности структуры фотосинтетических органелл и выяснена связь этой структуры с функцией. Все эти важные и интересные результаты ясно демонстрировали перспективность работ in vitro для выяснения механизма фотосинтеза. [c.5]

    Согласно уравнению на стр. 428, для восстановления одной молекулы СОг необходимы 3 молекулы АТФ и 2 молекулы НАДФ-Н. Для образования двух молекул НАДФ-Н (см. рис. 29) фотосистема I должна поднять на более высокий энергетический уровень четыре электрона, столько же электронов должна дать фотосистема II. для получения одной молекулы Ог. Так как для отщепления одного электрона необходим один световой квант, то для образования двух молекул НАДФ-Н и одной молекулы Ог необходимы 8 квантов. Если считать, что на каждую пару электронов в течение всего процесса приходится одно фотофосфорилирование, то при переходе двух пар электронов от фотосистемы II к фотосистеме I должно образоваться две молекулы АТФ. Однако для восстановления СОг необходимы три молекулы АТФ. Если перенос пары электронов сопряжен с фотофосфорилированием в двух местах, как предполагают многие исследователи, то возникают четыре молекулы АТФ. Возможно, что при определенных условиях вступает в действие циклический поток электронов, который вырабатывает только АТФ. Эффективность фотосинтеза в природе намного ниже величин, вычисленных, исходя из молекулярных процессов. Например, сахарный тростник запасает в виде органических соединений до 8% поглощенной световой энергии. Кроме того, суммарная эффективность фотосинтеза понижается за счет процессов фотодыхания, протекающего в митохондриях фотосинтезирующих клеток. Фотодыхание рассматривают как короткозамкнутую цепь фотосинтеза, при котором восстановительная способность электронов расходуется не на восстановление СОг, а на восстановление молекулярного кислорода. Оно не сопровождается окислительным фосфорилированием АДФ. [c.429]

    Эти две стадии составляют вместе легко обратимую окисли-тельно-восстаиовительиую реакцию, которая отличается от реакции гликолиза лишь тем, что коферментом в ней служит NADP+, а не (NAD+. При гликолизе окислеиие представляет собой сопряженное с субстратом фосфорилирование, на которое в целом затрачивается 8,2 ккал, причем 7 ккал из них сохраняется в виде АТР. При фотосинтезе восстановление ФГК до триозофосфата становится энергетически возможным благодаря использованию АТР. Тем ие меиее термодинамически невыгодное-пололсение равновесия первой стадии приводит к тому, что реакция легко идет в обратную сторону в присутствии ADP. Как показали опыты с реконструированной системой хлоропластов, ФГК-зависимое выделение кислорода быстро подавляется в результате добавления небольшого количества ADP (рис, 8.17), Реконструированная система хлоропластов состоит из хлоропластов, подвергнутых осмотическому шоку, к которым после этой обработки добавляют коферменты и белки стромы. Хлоропласты в такой системе лишены интактных оболочек, и поэтому ничто не препятствует свободному поступлению соединеиий внутрь хлоропластов и выходу из них. Во многих отношениях такую систему молено рассматривать как один большой хлоропласт, ограниченный стенками реакционного сосуда. Как мы уже. отмечали, реконструированная система с ФГК в качестве субстрата будет выделять кислород до тех пор, пока к ней не добавят ADP. Однако фотофосфорилирование (мы пока, еш.е не знаем, является ли оно циклическим, псевдоциклическим или к тем и другим) продолжается и после того, как прекращается, выделение кислорода. По мере превращеиия ADP в АТР временное ингибирование снимается. Аналогичное подавление могут вызывать Р5Ф и другие соединения использующие энергию АТР  [c.275]


Смотреть страницы где упоминается термин Фотосинтез циклическое фотофосфорилирование: [c.193]    [c.202]    [c.255]    [c.258]    [c.204]    [c.220]    [c.221]    [c.198]    [c.106]    [c.121]    [c.143]    [c.106]    [c.136]    [c.274]    [c.695]    [c.212]    [c.223]    [c.88]    [c.379]    [c.251]   
Микробиология Издание 4 (2003) -- [ c.281 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез

Фотофосфорилирование



© 2024 chem21.info Реклама на сайте